
Experience with an
Implementation of the

Idle Sense
Wireless Access Method

Yan Grunenberger, Martin Heusse, Franck Rousseau, Andrzej Duda

Grenoble Informatics Laboratory, France

1

1

It’s about...

• How to confront simulation with
implementation of a new 802.11 access
method...

• ... and what experience we got from it.

2

2

802.11 - MAC:
The Good

• Distributed algorithm for controlling
Congestion Window CW

• Binary Exponential Backoff (simple local
control done by each station)

• suitable for direct hardware implementation

3

3

802.11 - MAC:
The Bad

• CWmin is only optimal for a given number of
stations (3 or 4 for 802.11b)

• Collisions seen as failed transmissions and vice
versa

• problems with rate-adaptation

4

4

802.11 - MAC:
The Ugly

• Short term unfairness for retrying stations

• results from Binary Exponential Backoff

• Performance anomaly for competing stations
that use different data rates

5

5

Idle Sense Access
Method

• No BEB, dynamic control of CW instead

• Keeps distributed mode of operations

• each station count idle slots between 2 transmissions

• use this as an estimator of the load to adjust CW

• CW adjustment using AIMD

6

6

Idle Sense - Example

7

7

So, what do we need for
its implementation?

• Access to slot counting

• Nearly “realtime” operation...

• Be able to change the backoff mechanism

• Retransmissions should be software-based

• Generate random values from any interval

8

8

What development
platform?

• Hardware-based frame sending

• Atheros-based hardware with Madwifi software : good, but not
good enough

• Software-based (read : firmware) management
of packet transmission

• Intel and probably other firmware-based

9

9

Intel programmable
cards

• Code development and debugging at Intel Labs
in Cambridge

• Many Thanks to Dina Papaggiannaki

• Output: Cards with modified firmware

10

10

Implementation

• Programming a highly constrained device

• memory is limited, each line counts !

• no floating point, integers only

• no complex arithmetic operations, only register shifting

11

11

What is problematic ?

• Our algorithm was developed on simulators

• AIMD parameters, estimator based on floating values

• large values of CW were possible

5.1 Tuning the adaptation algorithm of Idle
Sense

We have extensively tested and evaluated the original
adaptation algorithm of Idle Sense [19]. We have
observed that applying AIMD to Pe is not a right thing
to do, in part because it requires a ceiling function to
prevent Pe from becoming greater than 1, which reveals
a shortcoming of the chosen approach. Adjusting Pe is
straightforward considering channel contention theory,
but then AIMD is probably not the right choice. In fact
AIMD is more suitable for controlling a positive integer
variable, because anyway multiplicative decrease keeps
it positive and additive increase is not a problem. Thus,
we propose to apply AIMD to the contention window,
which yields the following algorithm:

• If ni ≥ ni
target,CW ← α · CW

• If ni < ni
target,CW ← CW + ε

The footprint of this updating scheme is also more
compact than the previous one, as there is no need for
maintaining Pe variable required for computing CW.

We have also observed that the accuracy of the al-
gorithm improves, if we adjust the parameter maxtrans
[19] so that it becomes proportional to the number of
stations (recall that a station refreshes CW every max-
trans transmissions on the channel). Here the problem
with the original algorithm was that when the number
of stations increases, stations might update their CW
several times between two of their transmissions, which
is when CW is actually used. This means that for a
given set of AIMD parameters, the behavior changes
depending on the number of active stations, which is
not satisfactory. So we use the fact that Idle Sense
results in a CW value proportional to the number of
stations in a cell. Then, to speed up convergence when
n̂i is clearly off target, we use a small value of maxtrans
when ni is significantly different from the target value.
The refined adaptation mechanism is thus the following:

• If
∣∣ni − ntarget

i

∣∣ < β → maxtrans = CW
γ ,

• If
∣∣ni − ntarget

i

∣∣ ≥ β → maxtrans = 5,

where γ takes the value γ = 4. Using Eq. 5 and 9
in [19], this yields the following relations:

• for IEEE 802.11b, maxtrans = CW
γ ≈ 3N

• for IEEE 802.11a/g, maxtrans = CW
γ ≈ 2N

Algorithm 1 presents the formal specification of Idle
Sense.

5.2 Simplified computations
So far, we have tested the performance of Idle Sense

using simulation to tune different parameters such as

Algorithm 1 Idle Sense
maxtrans← 5 ; sum← 0 ; ntrans← 0
After each transmission {
/* Station observes ni idle slots before a transmission
*/
sum← sum + ni

ntrans← ntrans + 1
if (ntrans >= maxtrans) then

/* Compute the estimator */
n̂i ← sum/ntrans
/* Reset variables */
sum← 0
ntrans← 0
if (n̂i < ntarget

i) then
/* Increase CW */
CW ← CW + ε

else
/* Decrease CW */
CW ← α · CW

end if
if (

∣∣ntarget
i − n̂i

∣∣ < β) then
maxtrans← CW

γ
else

maxtrans← 5
end if

end if
}

ntarget
i and the coefficients of AIMD control. We used

two different discrete-event simulators: one that accu-
rately models the PHY and MAC layers [27] and an-
other one that only simulates the MAC layer [19]. The
parameters were represented as floating point numbers,
so all computations had good precision.

ntarget
i is calculated from the optimal value of CW

according to the formula of Idle Sense [19]. 1
α and

ε are the parameters of the AIMD algorithm while β
and γ impact the stability of the feedback loop. The
values of these parameters were tuned using simulations
in order to obtain a good tradeoff between stability and
convergence speed.

We have finally converged to the following values:

• ntarget
i = 3.91

• 1
α = 1.0666

• ε = 6.0

• β = 0.75

• γ = 4

As we have to implement Idle Sense on a processor that
only provides integer arithmetic and does not support
multiplication nor division operators, we need to care-
fully choose the right values and program computations
in a right way.

We have decided to use the values that are close
to the nearest power of 2 of a given parameter. For
example, we can approximate α parameter, which is
equal to 0.93755, with the ratio of 15/16 = 0.9375 that
can be computed as 1−1/16 easy to do on any hardware
(division by 2 corresponds to a register shift). We thus
have adopted the following values:

• ntarget
i = 4

• α = 1− 1/16

• ε = 6

• β = 1

• γ = 4

; a f t e r each t ransmiss ion :
mov ntrans AX
addi 1 AX
mov AX ntrans
mov maxtrans BX
cmp
jmp l t noupdate

; we have reached maximal t ransmiss ion
swap AX BX
shl ; ∗2
shl ; ∗2

; we go t maxtrans∗ t a r g e t (=4)
mov sum BX
cmp
jmp gt i n c r e a s e

dec r ea s e :
mov CW AX
mov AX BX
shr ; /2
shr ; /4
shr ; /8
shr ; /16
swap AX BX
sub

; now we have 15/16 o f CW in AX
jmp update

i n c r e a s e :
mov CW AX
mov 6 BX
add

update :
mov AX CW

noupdate :

Figure 1: Implemented Idle Sense access
method in pseudo assembler code.

We can now rewrite our main control loop in pseudo
assembler code using the chosen values of parameters
(cf. Figure 1).

5.3 Generating Pseudo Random Numbers
In the IEEE 802.11 standard, the size of contention

window CW only takes power of two values, for instance

with CW min = 31 for 802.11b, a station chooses a
uniformly distributed value between 0 and 31. The
exponential backoff mechanism doubles the size of CW
at each failed transmission up to the limit of CW max,
which is equal to 1023 for 802.11b. Implementing
backoff generation is thus straightforward: a station
generates a pseudo random value in a k-bit register (for
instance k = 16) and masks the required number of
high order bits (for instance 11 bits to obtain a value
between 0 and 31).

Figure 2: Interarrival histogram of the standard
Intel firmware for 802.11a, CW min = 15.

Figure 2 presents an example of measuring the dis-
tribution of random values on the Intel cards for con-
tention windows in 802.11a (CW min = 15). In the
experiment, one station tries to send frames as fast as
possible. We use Interarrival Histograms, a method for
precise measurements (of the order of 1 µs) on standard
hardware [4]. It is simple, yet powerful: a test wireless
station sends a flow of packets to a wired host connected
to a 802.11 access point via a direct 100 Mb/s Ethernet
link. We record the timestamp of the packet arrival
with the precision of 1 µs and compute the interarrival
interval. The results are then presented as a histogram,
which allows us to visually grasp the most frequent
values of the transmission time and easily deduce some
low-level characteristics of the tested wireless card. In
the presented figure, we can easily observe 16 peaks of
almost the same height corresponding to all the values
in the contention window.

In Idle Sense, contention window CW may take any
value, not necessarily a power of two values. This
means that we need to find a different way of generating
random values in the range [0,CW]. Our idea to solve
the problem is to multiply CW (using a looped ADD
operation) by a pseudo random number on k bits and
then divide it by 2k (using a shift operation). Algo-
rithm 2 presents the implemented generation algorithm
of random backoff in the range [0,CW] (LFSR stands

12

12

... even more...

• 802.11 BEB only uses CW = 2^k

• Generating a random number is easy, but

• Generally use a Linear Feedback Shift Register: returns a value from an
interval [0, 2^k-1]

• Idle Sense requires generating random numbers
from any interval

• How to generate them on the constrained
device?

13

13

Random Generator

• A simple trick :

• Check randomness :

14

14

... but how to check CW
evolution?

• Debugging a new method on off-the-shelf
hardware

• simply use a header field to send the dynamic CW value

15

15

So, does it work?

• Yes, but we could measure it for a small number
of stations

• 6 stations hardly compare with 20 simulated
nodes

• Idle Sense benefits for a cell with many
stations

• Validation - we compared standard DCF
microcode and our new method...

16

16

Evolution of contention
window - DCF

17

 0

 20

 40

 60

 80

 100

 120

 36 38 40 42 44 46 48 50

C
o
n
te

n
ti
o
n
 W

in
d
o
w

Time (secs)

"timor"
"ceram"

"sulawesi"
"nicobar"

"andaman"

CW=128

CW=64

CW=32

CW=16

2 nodes 3 nodes 4 nodes 1 node4 nodes 5 nodes 3 nodes 2 nodes

17

Evolution of contention
window - IdleSense

18

 0

 20

 40

 60

 80

 100

 120

 10 12 14 16 18 20 22 24

C
o
n
te

n
ti
o
n
 W

in
d
o
w

Time (secs)

"timor"
"ceram"

"sulawesi"
"nicobar"

"andaman"

2 nodes 3 nodes 4 nodes 1 node4 nodes 5 nodes 3 nodes 2 nodes

Max dynamic CW = 80

18

Throughput on DCF

 4500

 5000

 5500

 6000

 6500

 7000

 56624 56626 56628 56630 56632 56634

D
a
ta

ra
te

 (
M

b
it
s
/s

)

Timestamp (ms)

ANDAMAN
CERAM

NICOBAR
SULAWESI

TIMOR

19

19

Throughput on
Idle Sense

 4500

 5000

 5500

 6000

 6500

 7000

 54950 54952 54954 54956 54958 54960

D
a
ta

ra
te

 (
M

b
it
s
/s

)

Timestamp (ms)

ANDAMAN
CERAM

NICOBAR
SULAWESI

TIMOR

20

20

Fairness

21

21

Latency

22

22

Interoperability

23

23

... so yes, it works.

• Off-the-shelf hardware can be useful for
implementing new MAC methods

• but some hacks are needed

• Some thoughts about simulation vs.
implementation

• simulators were needed to tune parameters and predict behavior

• implementation has revealed some limitations: fixed values, random
generation

• now, we need simulators that give results close to measurements

24

24

That’s all folks!

• Questions ?

• yan.grunenberger@imag.fr

25

25

mailto:yan.grunenberger@imag.fr
mailto:yan.grunenberger@imag.fr

