
A MPSoC prototyping platform for flexible radio applications

Damien Hedde
TIMA Lab

Grenoble, France

Damien.Hedde@imag.fr

Pierre-Henri Horrein
CEA-LETI

Grenoble, France

pierre-henri.horrein@cea.fr

Frédéric Pétrot
TIMA Lab

Grenoble, France

Frederic.Petrot@imag.fr

Robin Rolland
CIME-Nanotech

Grenoble, France

robin.rolland@inpg.fr

Franck Rousseau
LIG Lab

Grenoble, France

Franck.Rousseau@imag.fr

Abstract—Full-fledged software radio platforms are complex

and expensive systems, focused on signal processing, and not

very suitable for easy development and large scale experimenta-

tion. We propose a Multi-Processor System-on-Chip (MPSoC)

prototyping platform targeting the support for flexible radio.

This platform is fully customizable at every layer of the wireless

networking stack, making it easy to prototype new protocols

from the radio to the application layers. Our goal was threefold:

design an efficient but cheap platform supporting flexible radio,

provide support for a full system on the platform so that it

can run autonomously, use “standard” components as much

as possible and a modular design to ensure fast and simple

development and testing to network developers. We rely on

a highly modular Field-Programmable Gate Array (FPGA)

based architecture. The practical results achieved so far show

the effectiveness of the proposed solution in term of flexibility

and cost.

Keywords-Software radio, prototyping, hardware design,

wireless communications, flexible radio, reconfigurable design.

I. INTRODUCTION

With the ever-increasing demand for mobility in commu-
nication systems, wireless networking has become a major
research field today. Radio systems offer mobility for various
fields of communication: telephone, personal networks, busi-
ness networks, long distance networks. . . Fields previously
thought of as wired slowly become completely wireless. This
leads to a wide number of standards to support all the needs
and the constraints of such networks, and to an even wider
number of unofficial standards, new protocols and new trans-
mission rules. In mobile telephony, the number of standards
operators are required to support is huge, with all the legacy
from the early second generation and all the expected new
third generation standards. Since each standard is different,
sometimes even using different carrier frequency, specific
stations have to be deployed and maintained, meaning very
high costs and slow development. This is also true, to a
lesser extent, for computer networks. Considering the pace at
which new standards are being released, it quickly becomes
a nightmare for anybody involved in communication systems
to support them all at an acceptable cost in terms of
development time and chip area. An old idea already thought
of in the 70’s, first developed and coined Software Radio by
Mitola [1], was proposed to cope with such problems. With

this approach, a unique device can be made compatible with
a whole set of standards, for exemple ZigBee, Bluetooth,
802.11a/b/g/n, 3G, and can even be later upgraded to support
new ones.

In a conventional radio device, most of the trans-
mission chain and some parts of the Medium Ac-
cess Control (MAC) are implemented in hardware, for
power/performance/area/efficiency reasons, making the de-
vices hardly evolutive. It has several consequences when
working on wireless networking, either to study existing
standards, or to experiment with new propositions or evo-
lutions. Modifying the radio part is almost impossible, for
example changing the TX/RX procedures, providing cutsom
statistics to upper layers, or tuning the radio part from
the upper layers, which is needed for cross-layer optimiza-
tion [2]. The same limitations exist for the real-time part
of the MAC, which is responsible for packet scheduling on
the link. Many studies are then limited to the upper layers,
from the application layer down to the link layer, but they
can hardly touch some parts of the MAC nor the physical
layer. This means that when studying wireless networking,
experimentations are often limited to simulations. In a few
particular cases, finding and modifying an existing device is
possible, which is very time-consuming in any way, as in [3]
for example. To really validate new wireless networking
propositions, it is necessary to experiment with real devices
in real conditions. It also usually requires a large number of
devices, for example when working on sensor networks or
wireless mesh networking.

A faster and easier development could be achieved by
using software instead of hardware for these critical parts.
When software is used to implement the whole transmission
chain, the system is a Software Defined Radio (SDR) system.
The main problem encountered in SDR systems is the
huge processing power required. Such applications need
complex computations, and in classical SDR systems, the
platform used to run the software part is divided in DSPs for
high-throughput processing and General Purpose Processors
(GPP) for control and other computations. Such a system is
hardly feasible for research purposes because of the cost and
the complexity of the platform, and is thus mostly developed
for industrial use only (telephony for example [4]).

In this paper, we propose a hardware/software solution



for flexible radio support that overcomes the problems ex-
plained before. With the use of a careful design, partitioned
between software and programmable hardware, we provide
an efficient yet fully programmable wireless device. We
chose to implement the IEEE 802.11 standard for our first
experimentations since it is widely available. It is also used a
lot in the wireless networking community, for which easier
means of experimentation are of utter interest. Its imple-
mentation is made on a low-cost platform and is completely
autonomous, running it’s own operating system. Thus, large
scale experimentations with a large number of nodes can be
envisioned at a relatively low cost. In the rest of this paper
we will present the current approaches for implementing
flexible radio in Section II. We then present our solution
based on an FPGA and a modular MPSoC architecture in
Section III. An implementation of this architecture based on
a Virtex II Pro FPGA board is presented in Section IV.

II. RELATED WORK AND MOTIVATIONS

As pure software implementations rely on ASIPs (Appli-
cation Specific Instruction Processor), hybrid solutions can
be found to implement flexible radio platforms, using both
software and reconfigurable hardware (i.e. FPGA). Such
systems are less generic than pure SDR platforms, due to the
limited dynamic reconfigurability of FPGAs, yet they can
be developed at lower costs, and still offer an acceptable
speed of development. Dynamic reconfigurability was not
uppermost in our concerns. Efficient partial reconfiguration
is available in high quality (and thus expensive) FPGA
only, and it was not a real issue for prototyping and
experimenting new protocols. The reader interested in such
platforms may read [5]. We achieve the dynamic choice of
transmission by other means presented later. Many different
flexible radio implementations are possible, since the limit
between hardware and software can be drawn wherever we
want. Some implementations, such as [6] or [7], use more
hardware parts, others such as [8], are closer to pure SDR
systems. The WARP platform ([7], [9], [10]) is a platform
developed at Rice University, using an FPGA to implement
some DSP functions, and using specific hardware. An open
access repository is available, creating a growing developer
community. The GnuRadio project [8] is an open-source
project aiming at developing a digital signal processing
(DSP) library for standard computers. It is based on a Static
Data Flow representation, using elementary processing block
(FFT, filters, . . . ) exchanging data through lossless FIFO to
form higher level blocks. The project is closely associated
with Ettus Research which manufactures RF Front-End
boards, thus creating a full flexible radio platform. The
problem with this solution lies in the need for an external
computer, when a standalone board would be preferable.
These solutions mostly focus their interest on one part of
the whole networking stack. In contrast to these works,
our goal was to develop a flexible radio device with good

characteristics, being (i) generic and modular, as we want
to avoid redesign and redevelopment whenever a change is
made; (ii) accessible, to offer simplicity of development
and being usable by legacy networking drivers, to allow
fast and easy prototyping of new transmission schemes and
protocols;(iii) standalone and (iv) cheap, to be usable with
a large number of nodes and at a reasonable cost.

III. PROPOSED ARCHITECTURE

A. Networking constraints

One of our main motivations is to propose an architecture
which allows prototyping of network protocols from upper to
lower levels in the network stack, and experimentation from
a small to a large scale (tens of nodes at least). To fulfill these
constraints, it must be possible to use the proposed architec-
ture in a complete and autonomous network structure. As a
consequence, the platform must be completely autonomous,
running its own operating system, driving radio interfaces
for wireless communications. From our point of view, the
best approach to start with is to be compatible with existing
networking technologies.

These reasons led us to focus on IEEE 802.11 and to
choose the MadWiFi Linux wireless device driver. Mad-
WiFi [11] is open source project and was originally devel-
oped for Atheros chipsets. This driver is currently widely
used in the networking community. The MadWiFi driver
covers the network stack down to a part of the Medium
Access Control layer. The part of the MAC layer that is
implemented in the driver handles the management functions
(like association to an access point) but not the real-time
operations. The medium access state machine is de-located
into the wireless device, usually a firmware programmed
device whose specifications are not public.

We chose to embed a Linux based operating system into
the platform in order to support the driver. As Linux is well
known by most system and network developers, it provides
an easy to use environment when prototyping protocols.
Moreover, the large number of networking utilities provided
along with Linux will allow easier debugging, and provide
an easy way to collect information about the state of the
wireless device.

B. High-level overview

The architecture for flexible radio we propose has several
characteristics to fulfill. The most important by far is mod-
ularity and genericity, required to achieve fast development
and validation of new protocols with an integration effort
as low as possible. The architecture of the System on Chip
(SoC) proposed for this purpose needs to take this require-
ment into account. To achieve modularity in the framework,
we divided the architecture in independent blocks at several
levels.

The highest level blocks, called macro-blocks, correspond
to specified part of the network stack. This division in



functional blocks is due to the study of several wireless
standards, particularly the IEEE 802.11 [12] and 802.15.4
[13] standards. Two elements of this block-based architec-
ture are equally important: the blocks themselves, and the
interfaces between the blocks. The interfaces need to be
precisely defined since they provide the means to achieve
modularity. As shown in Figure 1, the architecture is divided
into five macro-blocks:

• Operating System (OS)
• Real-time Medium Access Control (MAC)
• Physical Layer Convergence Protocol (PLCP)
• Physical digital signal processing (PHY)
• Radio Frequency signal processing (RF)
Figure 1 shows the different macro-blocks, it also indi-

cates the data and control interfaces between the macro-
blocks.

Figure 1. Global overview of the proposed architecture

The top one is the Operating System (OS) macro-block, it
consists of a Linux based OS with the MadWiFi driver. The
second macro-block is the Real-Time MAC, it handles the
real time state machine of the MAC layer. This state machine
decides when a packet must be sent in accordance with the
MAC policy. The three last macro-blocks form the Physical
Layer of the architecture. This layer is responsible for
transmitting and receiving frames to and from the medium.
It includes frame generation (and recovery) as well as
modulation (and demodulation) of the radio baseband signal.
Finally this layer handles the modulation (and demodula-
tion) of the baseband signal on a carrier frequency. The
Physical Layer Convergence Protocol (PLCP) macro-block
of the architecture is in charge of the frame generation (and
recovery). This macro-block consists in a finite state machine
which controls the two remaining macro-blocks. The PHY
signal processing macro-block handles the baseband signal

generation (and recovery). The last macro-block is in charge
of final modulation (and demodulation) on the carrier.

C. Hardware/Software mapping

As this architecture is designed to be implemented in an
FPGA, the question of what is done in software and what is
done using hardware logic is important. Both solutions have
their own advantages and drawbacks. Indeed, a software
implementation gives the most flexible solution, but with
more performance limitations. On the contrary, a hardware
solution offers better computing performance at the expense
of flexibility.

The OS macro-block consists of the higher level of the
network stack and corresponds to a Linux based operating
system. This macro-block is done in software and must
be executed on a processor. The next two macro-blocks
(MAC and PLCP) correspond to finite state machines, each
one being in a different level of the network stack. They
are both real-time and may have to handle high data rates
and constrained latencies. These macro-blocks are also very
important because most of the flexibility in the network
communication is achieved through them. Since they handle
the MAC and PHY policies and mainly consist of finite state
machines, we propose to map these macro-blocks into soft-
ware in order to allow fast and easy modification. Figure 2
illustrates the software stack in the proposed architecture.
The software stack in the OS macro-block, is divided into
MadWiFi and application(s) parts. The only part that must
be modified in this macro-block is the Hardware Abstraction
Layer (HAL). This HAL must be adapted depending on
the MAC macro-block implementation. The others part of
MadWiFi can be reused without modification. This way, any
evolution in the code of the driver is mostly transparent.

Figure 2. Software organization and mapping in the macro-block archi-
tecture

To achieve maximum flexibility, all macro-blocks should
be implemented in software. However digital signal pro-
cessing is very time consuming when done in software.



Since it is difficult to implement the PHY macro-block in
software, we propose to design it using hardware logic. We
sacrifice some flexibility for the sake of performance, but
using programmable hardware keeps a good trade-off. This
macro-block is further detailed in the following subsection.
The last macro-block (RF) is in charge of final modulation
on carrier. It cannot be done into an FPGA because of the
high frequencies needed (for example, 2.4 GHz for WiFi).
This block will be external to the FPGA and done using a
specific chip depending on the targeted applications.

D. PHY macro-block

As said before, the PHY macro-block is in charge of the
digital signal processing of the baseband signals. We propose
to divide this macro-block into two signal processing chains:
a transmitting (TX) chain and a receiving (RX) chain.
Each is interfaced with the PLCP macro-block and RF
macro-block. These chains are actually responsible for the
generation (or recovery) of the baseband IQ signals from (or
to) real data.

In order to design these chains, we used an approach
similar to GnuRadio [8]. Yet, we decided to design these
chains in hardware for performance reasons. The latency and
data rate of these chain are indeed a key factor in the whole
platform performance. Each chain is divided into several
basic processing blocks. A processing block computes one
input stream into one output stream. Examples of stream
types are Byte, Bit, Phase or Complex (representing a radio
signal). Special blocks are used to interface a chain with
the processor and the medium front-end. The computation
blocks all share the same FIFO-like interface, a block is fed
by the previous block in the processing chain. Using this
approach we can generate complex signal processing chains
by sequencing several processing blocks. Furthermore, it
provides high modularity during the design phase because
processing blocks can be reused in different chains.

Figure 3. An example transmitting chain with two possible processing
paths

Figure 3 shows the internal architecture of a processing
chain. To achieve higher flexibility in processing chains,
stream multiplexers and demultiplexers can be used between
blocks. These components allow dynamic selection of a
specific processing path in a complex chain (see Figure 3).

In order to handle precisely a processing path modification,
each piece of data in a processing chain is tagged with an
identification label (ID). These labels are interpreted by the
stream (de)multiplexer which can be configured to modify
the path when a particular ID is detected. In addition to
the stream interfaces, each block may have three others
interfaces:

• An interrupt output signal, to signal an event to the
PLCP macro-block.

• An interconnect interface, to give access to memory
mapped registers.

• A compulsory initialization input signal, to trigger the
initialization of the block.

The memory mapped registers are used to control (to
acknowledge an interrupt for example) and configure the
blocks. The configuration adds flexibility to a hardware
block. The initialization signal of a block triggers a process,
in which the only thing that must be preserved is the config-
uration of the block. In order to support a fast initialization
of a whole processing chain, the initialization signals of each
block of a chain are connected together and form a unique
signal driven by the PLCP macro-block.

E. Interfaces specifications

Modularity is achieved through the use of independent
macro-blocks in the architecture. Yet, these blocks need to
be linked, and a very important part of the architecture is
thus the interfaces between the different blocks. The first
interface, between the MAC and OS macro-blocks is part of
MadWiFi and could not be easily modified. It is not a real-
time interface, but requires persistence for the data. Data
may be used more than once, and since control takes place
through this interface, the state of the wireless device may
be shared between the two macro-block.

The next two interfaces, between MAC, PLCP and PHY
macro-blocks, are critical interfaces. Since time decisions
are made by the MAC macro-block, all the lower level parts
of the architecture are constrained by the timing. When the
decision to send data is taken, it must be done right away,
not doing so would break the MAC protocol. When data
are received, they must be processed immediately, to free
the PHY macro-block to process the next task. Through
the MAC/PLCP interface, the MAC macro-block sends
and receives packets, specifies transmission configuration
and gets information from the physical layer. Through the
PLCP/PHY interface the PLCP sends and receives frames
and controls the processing chains.

The last interface consists in the baseband and control
signals needed by the RF macro-block.

IV. IMPLEMENTATION AND RESULTS

A. The XUP Virtex-II Pro board

In order to implement the MPSoC architecture for flexible
radio applications described in the previous section, we



needed to choose an FPGA board. Indeed, using an existing
board has a lot of advantages. First of all, it avoids the
development of a specific board, as Rice University did with
WARP, which is difficult, time consuming and expensive. We
decided to use the XUP (Xilinx University Program) Virtex-
II Pro board. As part of the Xilinx University Program this
board is very accessible for academic usage. This board is
based on a Virtex-II Pro XC2VP30 FPGA, which embeds
2 PowerPC 405 core, 13000 slices, 2 Mb of Block-RAM
(BRAM) memory and some hardware multipliers.

The XUP Virtex-II Pro board also provides various inter-
face connectors. Some of those interfaces are very interesting
for our platform. Using the DDR SDRAM connector we can
add up to 512 MB of external memory, which is necessary
in order to run a Linux Kernel. There is also a Compact
Flash connector, providing an easy way to store FPGA
configurations and/or file system on a flash card. The board
also provides an Ethernet (10/100 Mb/s) RJ45 port as well
as an RS232 serial port. It has some generic connectors too,
which can be used to connect the RF front-end devices in
charge of digital/analog conversions and carrier modulations
in our case.

B. The 802.11 example

The 802.11 standard is the precursor of the well-known
802.11b or WiFi standard. It offers one compulsory data rate
(1 Mbps), with 3 possible physical layer implementations
(Infrared, Radio Frequency with Frequency Hopping, and
Radio Frequency with Direct Sequence Spread Spectrum
(DSSS)). Each PHY layer has an optional 2 Mbps data rate.
In the following subsection, we only focus on the DSSS
physical layer.

Figure 4. Simplified view of the 802.11 DSSS PHY transmitting
processing

The radio frequency DSSS PHY layer operate in the
2.4GHz ISM (Industrial, Scientific and Medical) band. It
uses phase modulation to represent digital data on an analog
baseband (BPSK for 1 Mbps and QPSK for 2 Mbps),
and uses a 11 chips word as a spread sequence. This
modulation scheme is presented in Figure 4, along with
required throughput at each point of the chain.

The MAC layer proposed for the 802.11 uses a well-
known Carrier Sense Multiple Access / Collision Avoid-
ance (CSMA/CA) protocol. The protocol implementation for
802.11 uses an acknowledgement (ACK) mechanism, and
an optional Request To Send / Clear To Send (RTS/CTS)
mechanism to avoid the hidden terminals problem. These

packets (ACK, RST and CTS) are sent after a delay of
duration SIFS after the packet triggering it. The collision
avoidance is done using a contention window mechanism:
before sending a packet, a node waits for a clear medium
(duration DIFS) then waits an additional random number of
clear SLOT time. Figure 5 shows the CSMA/CA mechanism
without the RTS/CTS mechanism. The timings defined by
the standard for the DSSS PHY layer are very restrictive:

• the SIFS time is 10 µs
• the SLOT time is 20 µs,
• the DIFS time is 50 µs, be
• the error margin for all timings is 1 µs.

Figure 5. Illustration of the CSMA/CA mechanism

This standard, although it isn’t the most complex standard
to implement, is a good example of current standard as it
requires small latency and multiple data rates. For these
reasons, we chose it to validate the architecture concepts.

C. Implementation of the hardware/software MPSoC archi-

tecture

The Virtex-II Pro let us several choices for implementing
the proposed architecture. It includes two PowerPC 405
native cores, but soft-cores can also be used the logic cells.
Some MicroBlaze cores can indeed be deployed into the
FPGA. The MicroBlaze is a soft-core developed by Xilinx,
and is interesting because it provides several FSLs (Fast
Simplex Links) interfaces, which can be connected directly
to FIFOs for example. These links are available as 32-
bits wide inputs and/or outputs and are accessible by using
specific instructions.

Due to the reasonable processing power of the PowerPC
405 and the fact that several operating systems are available
for it, we use one of the two available cores to execute
the OS macro-block of the architecture. The local memory
of the OS macro-block is made of 512 MB of external
DDR-RAM connected to the board. Each of the remaining
two software macro-blocks (MAC and PLCP) are executed
on a MicroBlaze core, allowing the use of the FSLs for
connecting dedicated coprocessors or interfacing with other
macro-blocks. Each MicroBlaze uses its own BRAM local
memory.

In our implementation, the PowerPC runs at 300 MHz
and the MicroBlaze cores at 100 MHz. A good illustration



Figure 6. Implemented hardware architecture of the four upper macro-blocks

of the constraints the architecture has to cope with is the
time between the reception of the last bit of a packet and
the transmission of the first bit of the acknowledgment: the
SIFS duration in 802.11b is 10 µs, this corresponds to 1 000
cycles when operating at 100 MHz.

Figure 6 presents the hardware implementation of the
architecture, it shows only the four upper macro-blocks as
the RF macro-block isn’t implemented in the FPGA. The
interface between OS and MAC macro-blocks uses a shared
BRAM memory and a dedicated mailbox component, which
uses interrupts, in order to synchronize the two macro-
blocks. Packet descriptors and data reside in the shared
BRAM because both macro-blocks access to them. Because
these packets shall be transmitted between the MAC and
PLCP under tight latency and bandwidth constraints, the
MAC/PLCP interface uses FIFOs connected to the FSLs
of the two MicroBlaze cores. Hence we guarantee a very
small latency in the communications between the MAC and
PLCP macro-blocks. We use a custom protocol between
these macro-blocks, it sends predefined commands and data
through the FIFO.

The interface between PLCP and PHY macro-blocks uses
two different mechanisms. Each processing chain is con-
nected to the PLCP MicroBlaze through one FIFO link, this
allows the MicroBlaze to send or receive data bytes directly
through these links. In a different way, the control and
configuration of the chain blocks are done through memory
mapped registers accessible on the local interconnect (an
On-chip Peripheral Bus (OPB) in our implementation). The
blocks use interrupts to signal events to the PLCP and the
initialization signals of each chain are controlled through a
chain controller connected to the interconnect.

The data interface between the PHY macro-block and
the RF front-end is dependant on this RF front-end. The
interface blocks of the processing chains must be compatible
with it. Generally it consists of parallel data buses in order

to send and receive data to and from analog converters. The
control of the RF macro-block must be done using compo-
nents connected to the local interconnect. These components
depend on the RF front-end.

The Linux kernel which is executed on the PowerPC 405
is a version 2.4.26, standard networking tools are available
like ifconfig or iwconfig. Because of the tight latency
and bandwidth constraints, we did not put any operating
system on the MicroBlaze cores and the two finite state
machines are directly executed. When designing the state
machines, careful management of interrupts is necessary
since they can add a lot of time unpredictability. A custom
HAL (see Figure 2) is used by the MadWifi driver, so
that the lower level macro-blocks are seen as any MadWiFi
compatible wireless peripheral.

The whole configuration of the FPGA is stored on a
Compact Flash card, as well as the image of the file system
which is used by the Linux kernel. Therefore the platform is
standalone. This implementation also provides two external
interfaces which can be used to control the platform:

• A serial interface is provided by the RS232 connector.
This interface is mapped onto the main terminal of the
Linux kernel, and is useful for local developments or
tests of the platform.

• A network interface is provided by the Ethernet con-
nector. This interface is also linked to the Linux kernel,
and can be used to remotely control the platform as well
as getting access to a remote file system.

D. Partial 802.11b physical layer implementation

In order to experiment the 802.11 DSSS physical layer
(which corresponds to the lower data rates of the WiFi
standard), we needed a compatible RF front-end. For this
purpose we adapted the MAX19713 evaluation board to
the FPGA generic connector. The MAX19713 is a Maxim
analog front-end which contains several DACs (Digital to



Analog Converters) and ADCs (Analog to Digital Con-
verters). This component has been specifically designed to
handle WiFi baseband signals. The IQ baseband signals
samples are transmitted through a 10 bits parallel bus at up
to 45 MHz and the control of the front-end is done through
a SPI (Serial Peripheral Interface) bus.

Figure 7. Receiving chain of partial 802.11b standard, the data types are
described between the blocks.

We developed the PHY macro-block corresponding to the
1 Mbps and 2 Mbps data rates of the 802.11b standard. We
use the MAX19713 component with a 44 MHz sampling
rate, corresponding to an oversampling factor of 4. This
macro-block is formed by the two TX and RX processing
chains. Figure 7 presents the receiving chain. Some of the
blocks are described below.

• Correlator: It detects the correlation of the input with
the configured sequence, the output stream corresponds
to the correlated results. In our case we use the Barker
code of length 11: +1+1+1-1-1-1+1-1-1+1-1.

• Data Synchronizer: This block is an adapter between
two clock domains, it outputs the input stream without
change. It is necessary because the clock of the RF
interface side of the chain is linked to the sampling
rate, whereas the PLCP side of the chain is linked to
the PLCP MicroBlaze clock.

• Phase Computer: It transforms each complex input into
its corresponding phase.

• Pattern Filter: This block does not generate any output
until a configured pattern has been detected, the input
stream is then output without modification. It is used to
filter the data stream until the Start of Frame Delimiter
has been detected.

We didn’t use any RF transceiver and connected di-
rectly the analog baseband IQ signals of two MAX19713
evaluation boards. Each MAX19713 evaluation board was
connected to a XUP Virtex-II Pro board which generates
its own clock (the two XUP Virtex-II boards were not syn-
chronized with a common clock). This allowed transmission
and reception of data frames at the PLCP macro-block level.
Figure 8 shows an experiment using two XUP Virtex-II Pro
boards and MAX19713 evaluation boards.

Figure 8. PHY layer implementation using the Maxim MAX19713 analog
front-end

E. Validation of higher macro-blocks

Even if the platform is still under development, some
results are already available. The OS block is operational,
offering two running modes. A "normal processing" mode,
and a development mode. The first mode optimizes the per-
formances, as it uses a file system stored in memory, but can
not be easily modified. A second mode allows easy and fast
modifications of the layers, with reduced performances since
it uses a remote file system. The interface between the real-
time block and MadWiFi is almost completely implemented,
leaving only the rates adaptation algorithms unimplemented.
The real-time block implements a fully functional simplified
CSMA/CA protocol, the RTS/CTS exchange is not available.
Since we use the 802.11 network stack, the MAC layer
handles Access Point association.

In order to validate higher macro-blocks (OS and MAC)
with radio communication, we use a Cypress Wireless-USB
device: the CYWUSB6935 device. This device provides an
SPI interface to send and receive packet of bytes. It handles
the whole physical layer of the wireless-USB, which works
in the 2.4 GHz ISM band. Therefore, the PHY macro-block
is inside the Cypress device. We then developed a specific
PLCP state machine in order to interact with this device.

Figure 9 shows higher level macro-blocks experiments
using Cypress devices. For the experiments, the device was
configured with a 16 kb/s data rate. With these parameters,
the real throughput for a TCP connection during a file
transfer using the FTP protocol between two node using
the Cypress device is 11.2 kbps. These results highlight the
validity of the modular architecture as the experiment uses
a 802.11 MAC layer with a Wireless-USB physical layer.



Figure 9. MAC layer implementation using the Cypress Wireless USB
device

V. CONCLUSION

In this paper, we have presented a cheap and simple
flexible radio system, based on an MPSoC architecture. The
latter provides modularity and simplifies de development
of time-constrained protocols. The proposed architecture
offers a reduced development cycle when experimenting
with network protocols. Our implementation is based on
Linux, thus giving access to many standard networking
tools, and on 802.11 and the MadWiFi driver, which are
already widely used in the wireless networking research
community. The platform can be connected to a PC during
the development phase to speed-up the process, but can also
be used as an autonomous wireless node: experimentations
can be set up and then deployed using a large number of
nodes.

So far the results are very promising, even if the developed
platform is not yet fully integrated. An off-the-shelf wireless
device was successfully used as a black-box PHY block
interfaced under the MAC for testing purposes during its
development phase. An 802.11 PHY block was developed
and proved to provide the required performances. We plan to
develop an 802.15.4 (ZigBee) PHY block to further validate
the modular design. On the software and protocol sides,
existing standard technologies were used whenever possi-
ble, drastically speeding up the coding phase for network
developers.

REFERENCES

[1] J. Mitola, “Software radios-survey, critical evaluation and
future directions,” May 1992.

[2] S. Shakkottai, T. Rappaport, and P. Karlsson, “Cross-Layer
Design for Wireless Networks,” IEEE Communications Mag-

azine, vol. 41, no. 10, pp. 74–80, Oct. 2003.
[3] Y. Grunenberger, M. Heusse, F. Rousseau, and A. Duda, “Ex-

perience with an implementation of the Idle Sense wireless
access method,” in Proceedings of ACM CoNEXT, Oct. 2007.

[4] U. Ramacher, “Software-Defined Radio Prospects for Mul-
tistandard Mobile Phones,” Computer, pp. 62–67, October
2007.

[5] J.-P. Delahaye, J. Palicot, C. Moy, and P. Leray, “Partial
Reconfiguration of FPGAs for Dynamical Reconfiguration of
a Software Radio Platform,” in Proceedings of IST Mobile

and Wireless Communications Summit, July 2007.

[6] A. Saha and A. Sinha, “Radio Processor – A New Reconfig-
urable Architecture for Software Defined Radio,” in Proceed-

ings of International Conference on Computer Science and

Information Technology, 2008, pp. 709–713.

[7] P. Murphy, A. Sabharwal, and B. Aazhang, “Design of
WARP: A Wireless open-Access Research Platform,” in Pro-

ceedings of European Signal Processing Conference, Septem-
ber 2006.

[8] G. FSF, “GNU Radio – GNU FSF Project.
http://www.gnu.org/software/gnuradio.”

[9] K. Amiri, Y. Sun, P. Murphy, C. Hunter, J. R.Cavallaro, and
A. Sabharwal, “WARP, a Unified Wireless Network Testbed
for Education and Research,” in Proceedings of IEEE Inter-

national Conference on Microelectronic Systems Education,
June 2007, pp. 53–54.

[10] C. Hunter, J. Camp, P. Murphy, A. Sabharwal, and C. Dick,
“A Flexible Framework for Wireless Medium Access Pro-
tocols,” in Proceedings of Asilomar Conference on Signals,

Systems and Computers, 2006.

[11] MadWiFi, “MadWiFi Project – Trac.
http://madwifi-project.org/.”

[12] IEEE Std 802.11, Wireless LAN Medium Access Control

(MAC) and Physical Layer (PHY) Specifications, Institute of
Electrical and Electronic Engineers, June 2007.

[13] IEEE Std 802.15.4, Wireless LAN Medium Access Control

(MAC) and Physical Layer (PHY) Specifications for Low-Rate

Wireless Personal Area Networks (LR-WPANs), Institute of
Electrical and Electronic Engineers, October 2003.

[14] T. Shono, “IEEE 802.11 Wireless LAN Implemented on
Software Defined Radio With Hybrid Programmable Archi-
tecture,” IEEE Transactions on Wireless Communications,
vol. 4, pp. 2299–2308, September 2005.

[15] A. Tribble, “The software defined radio: Fact and fiction,”
January 2008, pp. 5–8.


