
An Execution Architecture for Synchronized

Multimedia Presentations

Franck Rousseau1? and Andrzej Duda2

1 Open Group Research Institute
2 LSR-IMAG

Grenoble, France

Abstract. We have de�ned an execution architecture for playing back
synchronized multimedia documents. We suppose that such documents
are speci�ed by means of several abstractions including hypertime links,
time bases, and dynamic layout. Our architecture is based on three con-
cepts: synchronization events, synchronization managers, and synchro-

nizable media objects. It supports the notion of elastic time that adapts
to available resources. We have prototyped the architecture using Java
and experimented with playback of simple synchronized presentations.

1 Introduction

Integration of di�erent types of media such as text, images, audio and video clips
has become a hot topic of research and many advances have been made recently:
products such as QuickTime, Director, Shockwave, and many others support
time-based digital video presentations and CD-ROM multimedia documents or
games provide interactive access to multimedia information. However, we still
need new ways for creating synchronized documents from available multimedia
contents present in the network. Such documents mix several types of media and
have an intrinsic temporal behavior.

Handling multiple media types has become common because of increasing
processing power and communication bandwidth, along with advances in soft-
ware techniques such as compression. The advent of Java, a new platform in-
dependent and secure programming language introduced by Sun Microsystems
in 1995, has added a new dimension to multimedia. It allows execution of code
downloaded form the network and supports operations on basic multimedia data
types such as audio and images. Several audio and video conferencing tools can
deliver multimedia contents to standard computers even in the currently clogged
Internet: vic, vat, Rendez-Vous, and FreePhone. A lot of work has been done to
enable transport of continuous data in real time over the network |RTP/RTCP,
RSVP.

However, these advances in hardware, software and networks are not followed
by real integration of multimedia at the level of documents. There are two rea-
sons for this situation. First, there is no widely accepted standard for specifying

? Franck Rousseau has been supported by Bull SA.



synchronized multimedia presentations that have inherent temporal behavior.
Such presentations may include continuous multimedia data (audio and video
clips) either stored on network servers or coming from live-data sources. Second,
even if such a standard exists, we need a 
exible execution architecture to play-
back synchronized presentations on di�erent platforms (something comparable
to Mosaic that made WWW widely known).

The WWW Consortium has initiated an activity to de�ne a new standard
for synchronized multimedia documents: SMIL [1]. SMIL adds to HTML some
features related to time behavior: components of a SMIL document may be
continuous multimedia. However, SMIL has some drawbacks:

{ Temporal composition is based on a hybrid approach that mixes two di�erent
abstractions: intervals and time-points. A scenario is represented as a tree in
which temporal operators par and seq are nodes and intervals corresponding
to multimedia objects are leaves. To make the par operator unambiguous,
SMIL de�nes additional attributes that refer to time-points. The attributes
specify the exact semantics of the par operator. As a result, a given scenario
can be expressed in several di�erent ways and speci�cation may become
confusing.

{ SMIL provides an optional lipsync attribute that applies to a group of objects
enclosed with the par operator. It is not su�cient to specify desired close
intermedia synchronization between multimedia objects. Moreover, the exact
behavior of the attribute is not de�ned and left to implementation.

{ The layout of a document is based on a tuner element that uses a simpli�ed
version of CSS positioning. As a consequence, the layout is static | it can-
not change in time. The static layout limits authoring possibilities, because
temporal objects may require placement that varies in time.

To overcome these problems, we have proposed temporal extensions to HTML
based on three concepts [2]:

{ hypertime links for temporal composition,
{ common time bases for close lip-sync synchronization between media objects,
{ dynamic layout that can be seen as an extension of media objects.

A hypertime link is similar to the standard WWW hypertext link, however,
it has an explicit temporal semantics: it relates two media samples (e.g. video
frames) and assigns time instants to the samples. A time base is a means for
specifying close intermedia synchronization. It can be thought of as a virtual
time space in which media objects \live". It de�nes a common time coordinate
space for objects that are synchronization dependent. We extend the notion of a
document layout: it may be speci�ed as an object having temporal behavior in a
similar way to media objects. This feature allows seamless integration of spatial
and temporal dimensions of a multimedia document.

A synchronized multimedia document requires an execution support for sche-
duling, synchronizing, coordinating, and controlling di�erent media objects and
actions according to a temporal speci�cation. Such a support should be 
exible



enough to adapt to di�erent platforms, to adjust quality of service to available
resources, and to manage scalable content. We have de�ned a 
exible execution
architecture based on three concepts: synchronization events, synchronization

managers, and synchronizable media objects. Synchronization events support hy-
pertime links: they aim at a target and contain an associated action that must
be triggered at a given time in the future. A synchronization manager coordi-
nates all media objects having a common time base. A synchronizable object
integrates media and synchronization: it encapsulates the services needed for a
media to be played back and for controlling its execution.

The three concepts on which our architecture is based change the notion of
time: time becomes elastic, which means that it adapts to available resources.
In a computing environment that does not have strong real-time support, it
provides 
exible adaptive synchronization and best e�ort quality of service. If
a real-time support is available, the architecture provides guaranteed quality of
service. We have prototyped our architecture using Java and experimented with
playback of simple synchronized presentations.

In the remainder of the paper, we summarize the proposed temporal exten-
sions to HTML (Section 2), present the execution architecture that supports the
extensions (Section 3), overview its implementation (Section 4), discuss related
work (Section 5) and outline conclusions (Section 6).

2 Integrating Time into HTML Documents

The W3C initiated an activity to explore integration of synchronized multimedia
into WWW documents. It has de�ned a working draft of SMIL (Synchronized
Multimedia Integration Language), a new language that extends HTML with
temporal functionalities. It is based on XML and provides some basic func-
tionalities for including continuous multimedia data such as video and audio in
WWW documents. However, as stated in the introduction, it has several draw-
backs. In a previous paper [2] we have proposed temporal extensions to HTML
based on: hypertime links, time bases, and dynamic layout.

2.1 Hypertime Links for Temporal Composition

We propose to use a simple functional paradigm derived from temporal point
nets to specify temporal composition: a temporal link between an origin and
a target. We call it a hypertime link by analogy to its WWW companion. A
hypertime link has an explicit temporal semantics: it relates two media samples
(e.g. video frames) and assigns the origin's time instant to the target. It can
start or skip an object at the speci�ed target position or stop it if the target is
the end of the object. Following a hypertime link is automatic in the sense that
it does not require any user interaction and consists of skipping in time from the
origin media sample to the target. The functional relation has a nice analogy
with hypertext links which expresses a relation between an origin place and a



target one, and whose activation allows the user to jump (instantaneously, in
theory) from one place to another in the space of documents.

We also extend the notion of the origin of a hypertime link to include a
possibility of specifying a portion of a temporal media (a range of samples) as
an origin, in the same way as a portion of text can be an origin of a hypertext
link.

2.2 Common Time Bases for Close Synchronization

Speci�cation of temporal composition is not su�cient to playback a multimedia
document. We need some more information about how media objects must be
synchronized. This information is particularly useful in a computing environment
that does not provide strong real-time support. In such an environment, di�erent
media segments started at the same instant may run out of synchronization
after some time and require some corrective action (such as dropping samples)
to become synchronized again. We want to be able to specify which objects
should be kept synchronized, how often, and what is the nature of this close
synchronization (in other words, who is the master of the time).

For this purpose, we de�ne the notion of a time base. A time base is a virtual
time space in which media objects \live". A time base de�nes a common time
coordinate space for all objects that are related by some relations, for example
master-slave dependency. A time base can be seen as a perfect time space in
which real world phenomena such as jitter or drift do not exist and media objects
behave in a perfect manner. Obviously, such a perfect time space does not exist,
however, it can be implemented closely enough using real-time support. If such a
support is not available, which is the case of many existing systems, a document
should indicate how the quality of presentation is to be maintained and what is
the nature of synchronization to be enforced.

We de�ne the nature of synchronization between media segments using the
notions ofmaster and slave. A master-slave relationship de�nes a master control-
ling a slave according to its needs (Figure 1a). We extend this notion to multiple
masters and slaves (Figure 1b) through the common time base: a master can
accelerate time or slow it down, hence slaves and other masters must adjust to
time. The master-slave relationship allows the user to easily de�ne the behavior
of media segments with respect to synchronization.

Another way to control synchronization between media segments is through
synchronization points. When close lip-sync synchronization is not necessary,
for example between a video clip and an audio comment, we do not need to
enforce synchronization for each video frame or audio bu�er. We rather specify
some time instants that we call synchronization points at which synchronization
should be enforced. Synchronization points can be speci�ed at some intermittent
user-de�ned instants, for example at the beginning or at the end of a video shot,
as well as at the instants when some text must be presented along with a closed-
captioned video scene. Synchronization points may also be speci�ed as periodic,
for example we can say that two media objects must synchronize at every interval
of 1 sec. When no explicit synchronization points are de�ned, synchronization is



master slave

master

master

slave

slave

slave

a.

time

b.

Fig. 1. Masters and slaves in a common time base

enforced at the smallest possible grain, i.e. at each video frame or audio sample
bu�er.

The two mechanisms for synchronizing media segments: the master-slave
relationship in a time base and synchronization points allow authors to express
complex synchronization constraints to ensure that the document will be played
back as the authors intended it to be, thus preserving the semantics of the
document.

2.3 Media Objects and Dynamic Layout

We suppose that a synchronized multimedia document may include a variety of
media objects having temporal behavior. A media object de�nes time evolution
of media samples of one type. Media samples must be presented at precise time
instants de�ned by the rate of presentation. The rate may be imposed by the
author, adapted to match the duration of another object, or adjusted to syn-
chronize with other objects. A media object schedules presentation of samples
within a given time base. In this way, objects in the same time base are synchro-
nized. We suppose that traditional media objects such as audio and video can
be enriched with temporally scrolled text.

In addition to synchronized presentation of media samples, a media object
can be controlled by other objects according to temporal composition. A hyper-
time link activated by another object can change the current presentation of an
object and force it to skip to the target sample or to stop.

We de�ne a dynamic layout as a special case of a media object. It de�nes a
temporal behavior of the physical layout. The only di�erence is that layouts are
neither masters nor slaves since they do not contain any media samples to be
synchronized. It encapsulates frames, a means for de�ning regions of screen in
which media objects are presented. Frames can be mixed with static elements
such as traditional HTML text paragraphs. Frames can include other layouts to
specify nested layouts that provide nested coordinate spaces. Hypertime links
de�ne how the layout changes in time. This approach allows seamless integration
of spatial and temporal dimensions into a multimedia document.



The syntax of the temporal extensions, examples and discussion are given
in [2].

3 Execution Architecture for Synchronized Multimedia

Documents

To support the model presented above, we have de�ned an execution architecture
for playing back documents speci�ed using the proposed temporal extensions to
HTML. The extensions are fairly low-level, so all the proposed concepts have
their counterparts at the system level.

Figure 2 presents the global functional view of the architecture. Synchroniz-
able objects implement media objects with synchronization functionalities. Syn-
chronization managers take care of controlling time bases, and synchronization

events support synchronization points and hypertime links.

manager
synchronization

event

synchronizable
object

synchronization

synchronizable

multimedia document

<htlink ...> <timebase ...> <object ...>

multimedia browser

time basetemporal link media object

multimedia architecture

scheduler

media object

Fig. 2. Functional structure of the execution architecture

3.1 Principles

Our goal is to provide an architecture that takes care of time management in a
multimedia system. We want it 
exible and open enough to support our temporal
extensions as well as other standards such as SMIL. It should be extensible to
allow seamless integration of external components. Active objects provide a nice
basis for this goal, because they can guarantee 
exibility and extensibility. We
have begun with this approach in mind and after considering speci�c needs of



multimedia synchronization, we have came up with an event based model similar
to ATOM [3], but much simpler and more speci�c.

The architecture o�ers time management support to a collection of heteroge-
neous objects included in a multimedia document. Its only role is to guarantee
a coherent playback of a document according to its temporal speci�cation. Syn-
chronization of media objects raises three kinds of problems that should be solved
[4]:

{ Intramedia synchronization guarantees that a continuous media will be played
at a requested rate. This is implicit for most media that have a nominal rate
such as audio or video, but it can be de�ned explicitly for others: for example
some text associated with a closed-captioned video.

{ Intermedia synchronization enforces temporal relations between several me-
dia objects played at the same time. It also controls that the media objects
are played at a requested relative speed.

{ Media scheduling is related to the management of media during a playback
to make sure that events de�ned by the temporal composition of a document
happen at a right time, for example activation and termination of a media
object.

3.2 Architecture Components

There are three main components visible at the external interface of the ar-
chitecture: synchronizable objects, synchronization events, and synchronization
managers. A scheduler, an additional internal component, handles synchroniza-
tion events. Figure 3 shows the components of the architecture.

synchronization

manager

synchronization

Q

o

S

events

synchronization events’ path...

...

scheduler

render

synchronizable

decode

fetch

media object

network, disk, ...

decompression hardware, ...

display, loud-speaker, ...

internal clock

Fig. 3. Synchronization architecture



Synchronizable objects integrate media and synchronization: they encapsu-
late the services needed for a media to be played back and for controlling its exe-
cution. To be able to use external media objects (existing or proprietary software
for example) for extending capabilities of multimedia applications supported by
our architecture, the functions of media processing and synchronization should
be clearly separated. For this purpose, a synchronization objects encapsulates
a media object and implements a synchronizable interface. Each object has a
synchronization role, master or slave.

Media objects are autonomous entities used as building blocks in multimedia
documents. They encapsulate media processing functionalities needed to render
their corresponding media. They may contain di�erent modules to fetch data,
decode, render, and manage quality of service. Media objects do not need internal
synchronization, since it is provided from outside by our architecture. However,
they have to implement methods that allow controlling their internal temporal
behavior.

A synchronizable interface in Java terminology de�nes a set of methods
needed by an underlying multimedia architecture to handle synchronization.
When implemented by a media object, it becomes a synchronizable object, which
means that it can generate synchronization events and be controlled by synchro-
nization managers.

In this way, we provide a modular and extensible architecture: objects that
deal with new media or compression formats can be integrated in a seamless
manner.

Synchronization events convey time information between various entities. A
synchronization event de�nes an action aimed at a target and that has to happen
at a given moment de�ned by a deadline. When its deadline is reached, the event
is triggered and sent to the target so that it performs the required action. Events
are used for intramedia and intermedia synchronization and scheduling as it will
be described later.

A hypertime link can be easily implemented using such a synchronization
event. The deadline for a hypertime link can be obtained from the relative tem-
poral information associated with the link.

Synchronization managers implement time bases. They manage a pool of
synchronizable objects belonging to the same time base. They handle synchro-
nization events on behalf of these objects and enforce synchronization policies
de�ned by time bases through roles and synchronization points. Managers do not
handle time themselves|an internal global scheduler is in charge of scheduling
events.

The internal scheduler processes events posted by managers and triggers
them once their deadline is reached. The scheduler runs as a high priority task.
It should be carefully optimized so that dispatching events takes a minimum
amount of time.



3.3 Principles of Synchronization

We will explain the principles of synchronization: how the components of the
architecture cooperate to provide synchronization support. We have seen in
Sect. 3.1 that multimedia synchronization raises three kind of problems (from
the lowest to the highest level): intramedia synchronization, intermedia synchro-

nization, and media scheduling.
Media scheduling is done using synchronization events. The temporal com-

position of a document speci�ed by means of hypertime links de�nes media
scheduling: we have seen that hypertime links can be easily implemented with
synchronization events. An object can request an action such as an activation of
another object just by aiming at it with a start event having a right deadline,
so that the desired action will happen at the right instant.

Sequences of events maintain intramedia synchronization. Each synchroniz-
able media object implements an event generator for its own needs: it generates
events aimed at the object itself so that the object will be noti�ed when needed.
In this way, each object can simulate its own clock. For example, a continuous
media such as video will generate events to display each frame. It will be noti-
�ed each time a frame should be displayed. Figure 3 presents the path taken by
synchronization events.

According to our temporal composition model, intermedia synchronization

is done at the time base level using synchronization points. All media objects in
the same time base are to be intermedia synchronized at the granularity de�ned
by synchronization points. It is handled by synchronization managers, since they
implement time bases. Synchronization events can be marked as being synchro-
nization points at which master and slave should synchronize. If no synchroniza-
tion points are de�ned in the document description (see Sect. 2.2), which implies
that synchronization will be enforced at the smallest possible grain, all events
are marked as synchronization points. To enforce intermedia synchronization,
synchronization managers control and modify the relative positioning of events
marked as synchronization points according to the role of their targets, master
or slave.

3.4 Dynamic Generation of Events

Synchronization events in our architecture are scheduled according to an algo-
rithm based on dynamic generation of events. The algorithm is based on the
idea that an object generates an event dynamically and relatively to a previous
event. This approach presents several advantages:

{ since there is only one event per object, it keeps low the number of events in
the system at a given instant. As a result, there is no problem of handling
or sorting long lists of elements,

{ it copes gracefully with indeterminism, because there is no propagation of
time correction nor reevaluation of temporal constraints,



{ the overhead of event dispatch is kept low, because intramedia and interme-
dia synchronization and scheduling are centralized in synchronization man-
agers, thus avoiding complex and costly communication between media ob-
jects.

In our approach, instead of de�ning synchronization events using a deadline,
we use a creation time and a delay|these two values de�ne a deadline. If ei is
an event, its deadline is:

ei:deadline = ei:creationT ime + ei:delay (1)

Events are generated dynamically in a relative way with respect to a pre-
vious event. When event ei is triggered, then event ei+1 is generated with
ei+1:creationT ime = ei:deadline. This technique has two advantages. Small
time variations at the scheduling level have no e�ect on the sequence of events:
if an event is triggered a little too late, the next one will be generated with the
correct time instant. Moreover, if an event is modi�ed, for example the delay
of an event increases, we do not need to propagate this modi�cation, because
relative positioning in time does it transparently.

Figure 4 illustrates this approach. Events are represented on the timeline ac-
cording to their deadlines. Figure 4a shows events generated when no event is
delayed. Obviously, the time between triggering an event and the execution of
its associated action depends on system load. If there are no real-time guaran-
tees, this delay is not bounded. For time sensitive media like audio, bu�ering
techniques can be used to limit the impact of such small time variations.

Assume that an event is triggered and for some reason the target cannot
execute the required action. There are two solutions. If the target is a slave, it
cannot in
uence the time. Hence, the following events will be discarded until an
action can be executed at its correct instant (see Fig. 4b). Figure 4c presents the
case of a master. If its action cannot be executed, then it will be delayed and
executed later. Hence, the event is observed with a delay � after the e�ective
trigger instant and the following events will be automatically adjusted with this
additional delay in a transparent way.When such a situation occurs, we also need
to keep intermedia synchronization. In the case of a slave, it just discards events
to keep going with time. In the case of a master, the problem is more complex: if
we want that all other objects managed by the same synchronization managers
keep with time, their events must add the additional delay�. In this case, events
have to be modi�ed and rescheduled in a complex way, because many possible
cases exist: they might just have been triggered, queued up in the scheduler,
or just generated. Synchronization managers can handle this, because they are
the only objects that have the global view of events and their states: as we can
see in Fig. 3, all communications between media objects and the scheduler pass
through synchronization managers.

3.5 Discussion

The architecture is able to adapt to external conditions imposed by media ob-
jects according to a synchronization policy de�ned in a multimedia document.



time

time

timedelayed

busy

a.

b.

c.

slave

master

e1 e2 e3

e1 : discarded e2 : discarded e3

e1 : delayed observed event e2

trigger event

generate next event

event

action

�
�
�
�

���
���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

Fig. 4. Event scheduling for synchronization

Dynamic generation of events makes the notion of time elastic: the architecture
follow synchronization constraints at best. This approach has several advantages.
First, it guarantees temporal coherence of a document regardless of any system
conditions. The playback will never fall into an incoherent state, which means
that the architecture recovers from transient disturbances automatically.

If other services such as media objects or transport protocols implement
adaptive quality of service so that they can react to synchronization problems
signaled by the synchronization layer, documents will be played back at the best
available quality. Finally, if a real-time support is available, the architecture
provides guaranteed quality of service, since all time-critical operations will be
guaranteed.

4 Implementation

We have begun the implementation of our architecture using Java. Java has
many advantages that makes it a prototyping tool of choice: good language,
easy to program, full range of libraries for network and graphics support. Its
main drawback is performance, but it increases steadily. Just-in-time compilers

(JITc) already allow a signi�cant gain in performance, and with static compilers
like TurboJ developed at the Open Group Research Institute, we can expect
better performance soon. For critical parts like heavy decoding algorithms, native
libraries called from Java code can be used.



Fig. 5. Closed-captioned video clips synchronized with text

4.1 Prototyping

We have prototyped several concepts of our multimedia architecture. The pro-
totype can handle MPEG-1 and MPEG-2 video, text, audio, images and text. A
MPEG-2 decoder has been written in Java: it is a port of mpeg2decode (version
1.2 of July 19, 1996) available at the MPEG Software Simulation Group3 that
has been encapsulated and slightly modi�ed to allow synchronization control. It
is backward compatible with MPEG-1.

The prototype provides multimedia support including synchronization man-
agers, synchronization events, and media objects as described above. A compiler
allows to automatically generate presentations from descriptions in the language
we have introduced. Experiments with presentations containing closed-captioned
video synchronized with audio and text in two languages have been made. Fig-
ure 5 shows snapshots of video clips. Each of them is synchronized at scene
changes with two text sequences.

The main problem with our prototype is performance, however using Sun's
JITc on UltraSparc already allows us to obtain 15 fps for small MPEG-1 videos
(160 � 120). We expect to perform even better with TurboJ, because it can be
con�gured to remove the code for array bound checking while compiling. Our
�rst tests with the MPEG decoder show performance gains around 25% when
these checks are o�.

5 Related Work

This paper builds upon previous work done in the domain of multimedia syn-
chronization, time representation, and temporal composition.

Many proposed solutions are based on active objects such as ATOM [3]. We
have not adopted this model, because it seems to us that handling time critical

3 http://www.mpeg.org/MSSG/



tasks with �ne grain synchronization would be too costly. However, during the
design of our architecture, we have noticed that the global concepts of ATOM
correspond to our ideas, however they di�er with respect to synchronization
managers. To implement the concept of time bases, we have chosen to centralize
time management in synchronization managers to reduce information exchange
between objects. Compared to ATOM, it is as if managers of media objects
belonging to a common time base have been merged into a single external entity.
Event management is then much more simple and accurate, since it is performed
by one entity. Communication delays between objects are shorter and we do not
need associated locking mechanisms.

A synchronization mechanism based on global events has been already pro-
posed [5]. In this approach, events are global: all the streams to be synchronized
contain the same events, so that they can be matched to enforce synchronization.
In our model, events are provided by objects and synchronization is maintained
by tight control of the distance between these events. A distributed service for
orchestration of multimedia has been proposed by Gutfreund et al. [6]. Flinn
has proposed a mechanism for sound e�ect control [7]. In his solution, events are
scheduled in a similar way to our architecture. A scheduler dispatches events or
sequences of events as requested by independent applications. Such a framework
is very 
exible and is used to provide graceful degradation. However, events are
handled in a static way in the form of collections and the solutions proposed
are more oriented toward rhythmic patterns and phase synchronization. Other
work in this domain concerns systems supporting musical applications [8] and
distributed multimedia systems [9].

6 Conclusion and Future Work

We have de�ned an execution architecture for playback of synchronized multi-
media documents. We suppose that such documents are speci�ed by means of
several abstractions including hypertime links, time bases, and dynamic layout.
Their playback requires some support for scheduling, synchronizing, coordinat-
ing, and controlling di�erent media objects and actions according to a temporal
speci�cation. In addition to that, an architecture supporting documents should
be 
exible enough to adapt to di�erent platforms, to adjust quality of service to
available resources, and to manage scalable content.

We have de�ned a 
exible execution architecture based on three concepts:
synchronization events, synchronization managers, and synchronizable media ob-

jects. Synchronization events support hypertime links: they aim at a target and
contain an associated action that must be triggered at a given time in the future.
A synchronization manager coordinates all media objects having a common time
base. A synchronizable object integrates media and synchronization: it encap-
sulates the services needed for a media to be played back and for controlling its
execution.

We have prototyped the architecture using Java and experimented with a
playback of simple synchronized presentations. We perform tests to increase



performance, which would allow us to experiment with more complex documents.
After performance tunning, we would like to investigate adaptive quality of

service at the level of media processing and transport protocols. We will consider
solutions such as software feedback [10, 11], receiver-transmitter control [12],
client-server negotiation to see how they can be integrated with our architecture.

References

1. SMIL: Synchronized Multimedia Integration Language. WD-smil-971109, World
Wide Web Consortium (W3C), November 1997. Latest version available at
http://www.w3.org/TR/WD-smil.

2. Rousseau, F., Duda, A.: Synchronized Multimedia for the WWW. 7th Intl. World
Wide Web Conf. (WWW7), Brisbane, Australia, April 14{18, 1998.

3. Papathomas, M.: ATOM: An Active Object Model for Enhancing Reuse in the
Development of Concurrent Software. RR 963-I-LSR-2, LSR - IMAG, Grenoble,
France, November 1996.

4. Lu, G.: Communication and Computing for Distributed Multimedia Systems. Artech
House, 1996.

5. Manohar, N.R., Prakash, A.: Dealing with Synchronization and Timing Variability
in the Playback of Session Recordings. Proc. of ACM Multimedia'95, San Francisco,
CA, pages 45{56, November 5{9, 1995.

6. Gutfreund, Y.S., Diaz-Gonzalez, J., Sasnett, R., Phuah, V.: CircusTalk: An Orches-
tration Service for Distributed Multimedia. Proc. of ACMMultimedia'93, Anaheim,
CA, pages 351{358, August 1{6, 1993.

7. Flinn, S.: Coordinating Heterogeneous Time-Based Media Between Independent
Applications. Proc. of ACM Multimedia'95, San Francisco, CA, pages 435{444,
November 5{9, 1995.

8. Orlarey, Y. and Lequay, H.: MidiShare: A Real Time Multi-tasks Software Module
for MIDI Applications. Proc. of the Int. Computer Music Conf., Computer Music
Association, San Francisco, CA, pages 234{237, 1989.

9. Steinmetz, R.: Synchronization Properties in Multimedia Systems. JSAC, 8(3)401{
412, April 1990.

10. Cen, S., Pu, C., Staehli, R., Cowan, C., Walpole, J.: Demonstrating the E�ect of
Software Feedback on a Distributed Real-Time MPEG Video Audio Player. Proc.
of ACM Multimedia'95, San Francisco, CA, pages 239{240, November 5{9, 1995.

11. Cen, S., Pu, C., Staehli, R., Cowan, C., Walpole, J.: A Distributed Real-Time
MPEG Video Audio Player. Proc. of the 5th Int. Workshop on Network and Op-
erating System Support for Digital Audio and Video (NOSSDAV'95), volume 1018
of Lecture Notes in Computer Science, pages 151{162, Durham, NH, April 18{21,
1995.

12. Correia, M., Pinto, P.: Low-Level Multimedia Synchronization Algorithms on
Broadband Networks. Proc. of ACM Multimedia'95, San Francisco, CA, pages 423{
434, November 5{9, 1995.


