
MAP: Mobile Assistant Programming for Large Scale Communication Networks

St�ephane Perret, Andrzej Duda

IMAG-LSR, Grenoble, France

Abstract

We have de�ned a new network programmingmodel called
Mobile Assistant Programming (MAP) for development and
execution of communication applications in large scale net-
works of heterogeneous computers. MAP assistants are high-
level interpreted programs that can move between nodes,
create clones and report results. Their execution is asyn-
chronous and persistent to allow client disconnections and
survival of node failures. We have implemented the Mobile
Assistant Programming model using the World-Wide Web
framework and the Scheme programming language. Our
initial experience shows that the MAP model is a useful
paradigm for programming communication applications in
large scale networks.

1 Introduction

Large scale communication networks such as the Internet
provide access to various information resources and commu-
nication services. Despite some limitations such as low band-
width, poor quality of service and insu�cient network ser-
vices, the Internet has many interesting features. Because
of its large scale and variety of resources, it is in fact the
�rst operational prototype for future Information Highways.
The Internet presents several important characteristics that
inuence the design of support for communication applica-
tions:

� large scale: the Internet comprises over 30 millions of
hosts and it is expanding very fast [11];

� distributed information: vast collections of data sources
distributed over information servers like WAIS, Gopher,
Archie, and FTP are available via the uniform frame-
work of the World Wide Web [4];

� low bandwidth: although communication links have in-
creasing capacity, the growing volume of the network
tra�c limits the e�ective bandwidth that can be ex-
ploited by the users;

� disconnected operation: the majority of client machines
are connected intermittently by modem connections;

� server failures: in a large scale network, the probability
of a server failure or temporal disconnection is signi�-
cant;

� heterogeneity: many di�erent types of computers are
connected to the Internet.

In such a large scale network, we want to be able to access
resources e�ciently, �nd useful information or perform user
de�ned tasks on remote nodes. Traditional programming
models for network applications based on message passing,
remote procedure call (RPC) or remote object invocation are

well suited for client-server environments on local area net-
works, but they do not �t well the characteristics of large
scale networks presented above [17]. To address the charac-
teristics, we need a model that:

� addresses the problem of scale by exploiting inherent
parallelism;

� allows accessing information distributed over informa-
tion servers;

� reduces network tra�c by shipping function to data and
allowing execution of complex remote tasks;

� provides asynchronous invocation and result reporting;

� guarantees continuous persistent execution in spite of
server failures or disconnections;

� deals with heterogeneity by means of high-level inter-
preted programs.

We have de�ned and implemented a new model called
Mobile Assistant Programming (MAP) that addresses all
these issues. The implementation is based on the WWW
framework and the Scheme programming language. We have
tested and measured the �rst prototype with an example ap-
plication that searches for relevant HTML documents on a
set of WWW servers.

In the remainder of this paper, we de�ne the Mobile As-
sistant Programming model (Section 2), present briey its
implementation and application (Section 3), discuss related
work (Section 4), and outline conclusions (Section 5).

2 Mobile Assistant Programming

We consider a large scale network composed of nodes con-
nected via communication links. Nodes are virtual processors
with memory and secondary storage. As stated previously,
we want to take into account the important characteristics of
the networks like the Internet: large scale, distributed infor-
mation, low bandwidth, disconnected operation, server fail-
ures, and heterogeneity. The goal of Mobile Assistant Pro-

gramming is to provide exible mechanisms for programming
applications for accessing distributed data in such networks.
The user view of MAP consists of mobile assistants that the
user can activate to execute some operations on remote nodes
and to get results of their work. Internally, MAP supports
execution of assistants: it provides ability to interpret assis-
tant programs, to migrate them to remote nodes, to create
clones and to report results.

The characteristics of Internet-like networks greatly inu-
enced our design:

� to allow disconnected operation, an assistant is an asyn-
chronous process: the user activates an assistant and
gets results at some later time;

Execution

restore

State

save

Result

save

Map

State

Map

save

State

Map

Execution

restore

Execution
StateObject

Collector

restoresave

Map

Execution

User Node

Results

Assistant

restore

clone

Map Node

Map Node

report

report move

move

Map Node

Map Node

activate

get-results

Figure 1: Principle of MAP

� to reduce network tra�c, an assistant moves to a remote
node and executes operations on data located on that
node.

� to accomodate large scale, an assistant can clone other
assistants that execute in parallel as autonomous and
independent entities;

� to cope with node failures, an assistant is a persistent
process: its execution state is saved and can be restored
in the case of a node failure;

� to deal with heterogeneity, an assistant is a high-level
interpreted program.

Figure 1 presents the principle of the MAP programming
model. An application activates an assistant program on a
remote node to accomplish a complex task. An interpreter
interprets the assistant program and its execution state can
be saved to persistent storage (this action is called a check-

point). In case of a node failure, assistants are restored from
persistent storage automatically. To accomplish its task, an
assistant moves to a remote node, clones other assistants and
reports results. The results are collected in a result collector,
a persistent object located on any node in the system and
unique for an activation. An application can get results from
the collector.

Figure 2 presents the functional architecture of the model.
It is composed of four layers: application front-end layer that
provides user interface, activates assistants, and checks for
results, assistants layer that performs work for the applica-
tion and is programmed using MAP primitives, MAP prim-

itives layer that provides basic MAP operations, and system

support layer that takes care of checkpointing and communi-
cation.
2.1 Assistant Primitives

The assistant layer provides the following primitives (we
present the syntax of each primitive):

� activate source-code activate-node result-node

activate primitive initializes the execution of an assis-
tant on a given node. An application provides source

code to interpret and speci�es a result node where a col-
lector object is created. A capability for the collector is
returned to the user for later retrieval of results.

� get-results collector-capability

get-results primitive uses the collector capability to re-
trieve the results of an execution. The primitive de-
tects the termination of all assistants associated with
the given collector. The termination detection is based
on the graph of assistant cloning constructed from the
informationprovided by each assistant when it exits: the
identity of its creator and the number of clones it has
created. If all the results are not yet available, the primi-
tive returns partial results and status not-terminated. If
all the reports are available, the primitive returns the
results and status terminated.

2.2 MAP primitives

The basic MAP primitives are as follows:

� map-move node

move primitive transfers an assistant to a remote node.
The execution state of the interpreter is saved to persis-
tent storage, moved to the node using the post system
operation and restored at the target node. The opera-
tion uses an authentication scheme to verify if the assis-
tant is allowed to execute on the target node. If for any
reason the assistant cannot move to the target node (for
example the access is denied or post fails), the primi-
tive returns appropriate status. A checkpoint is created
on the target node and the assistant resumes execution.
After the primitive, the current state of the assistant is
con�ned to the target node. The primitive executes as
an atomic action.

� map-clone id

clone primitive creates a copy of an assistant with a
given identi�er. Both the creator and the clone assis-
tants are checkpointed. The clone assistant begins its
execution independently from its creator. The creator
keeps track of all its clones.

� map-node

node primitive returns the identi�er of the node where
an assistant executes.

� map-identity

identity primitive returns the identi�er of an assistant.

� map-print object

print primitive puts the value of an object to a result

bu�er. The bu�er, which is a part of the execution state
of an assistant, accumulates partial results.

� map-report

report primitive reports the result bu�er to the collector
object using the post system operation and clears the
bu�er. A checkpoint is taken after reporting.

� map-exit

exit primitive stops the execution of an assistant. The
information about all clones created by the assistant is
reported to the result collector object, so that the ter-
mination of all assistants can be detected.

Assistants

MAP Primitives

System Support

activate get-results

move clone report

save restore post

Application front-end

Figure 2: Functional architecture of MAP

2.3 System support operations

MAP primitives require some system support for check-
pointing and communication. They are used by MAP prim-
itives, but they are not accessible by the programmer. The
system support operations are as follows:

� The save operation creates a checkpoint by saving the
execution state of the interpreter to persistent storage.

� The restore operation resumes execution by restoring
the state of the interpreter from persistent storage. This
operation is also done automatically after a node failure
for all active assistants - they are restored from the last
checkpoint.

� The post operation transfers data to a remote node. The
operation takes into account node failures or disconnec-
tions and it tries to deliver the data even in such cases.
It also implements an authentication scheme based on
digital signatures.

2.4 Discussion

In the MAP model, assistants are asynchronous indepen-
dent entities. They execute in parallel, independently of one
another. There is no communication between assistants and
each assistant reports results directly to the collector. Re-
porting is also asynchronous|each assistant can generate as
many reports as it wishes at any time. A mobile host may
access partial results or check for the termination of all assis-
tants at will. These features of the model make execution of
an application transparent to the underlying communication
system. That means that an application can be executed on
a nomadic or a mobile host as well as on a �xed-location
node indi�erently.

Persistent execution of assis-
tants is based on checkpointing|the execution state of an
assistant is saved to persistent storage. When an assistant
executes a primitive that modi�es its external environment
such as move, clone, or report, a checkpoint is taken in the
primitive. The primitive and the checkpoint are executed as
one atomic action, so that an assistant can be restored after
a node failure in a consistent state and continue its execu-
tion. After a failure, a node restores all the assistants that
were active before a failure. This mechanism allow assistants
to progress in computation in spite of node failures.

Security is the major issue in a programming model such
as MAP, in which external programs execute on remote
nodes. There are two problems that must be addressed: ac-
cess control and resource control. Concerning access control,
we assume that assistants execute in a standard Internet en-
vironment, so we need an authentication mechanism to verify
if an assistant has rights to execute on a MAP node. We use
the digital signature scheme provided by PGP [1] that allows
a MAP node to verify if data transmitted over the network
come from an authorized user or another authorized MAP
node. We assume that we do not need systematic encryption
for transmitting the code or the state of assistants. However,
we guarantee that it is not modi�ed and it comes from an
authenticated sender. If an assistant needs to handle sensible
information that should be protected for privacy, it can use a
public key encryption scheme provided as a separate Scheme
primitive. We also assume that MAP nodes are protected
from external threats and they can store private keys needed
for authentication in a secure manner.

Resource control has three aspects: data access, system
functions, and resource consumption. The use of a safe, high
level interpreted language can address the �rst two aspects|
assistants do not have access to data nor to system functions.
We have removed some Scheme functions that are unsafe,
such as interactive primitives (reset) and primitives to ac-
cess operating system facilities (open, read, write). Re-
source consumption control is enforced on a per user basis.
According to the identity of the user that have initiated an
assistant, we limit resource consumption at di�erent levels.
For example, we restrict execution time, memory usage, disk
space and network tra�c volume of assistants. User groups
of di�erent resource consumption levels are de�ned in a MAP
node con�guration �le and are used to control resource us-
age.

To illustrate the MAP model, we present below an exam-
ple of a MAP program de�ning an assistant that goes over a
list of nodes and creates clones on each of them. Each clone
is identi�ed by a small integer and the �rst assistant has
the prede�ned identi�er main. The clones prints a message
containing their identity and the execution node. Figure
3 presents the time diagram of the assistant activation on
node-1.

(define (message msg)
(begin (map-print (map-identity))

(map-print " on ")
(map-print (map-node))
(map-print " : ")
(map-print msg)
(map-report)))

(define (name id)
(number->string id))

(define (go-over id node-list)
(if (null? node-list)

(map-exit)

(if (not (map-move (car node-list)))
(begin (message "move failed")

(go-over id (cdr node-list)))
(if (not (map-clone (name id)))

(begin (message "clone failed")

(go-over id (cdr node-list)))
(if (equal? (map-identity) "main")

(go-over (+ id 1) (cdr node-list))
(message "work"))))))

(go-over 1 '("node-1"

L

E

C

O

R

T

partial results
not-terminated

final results

activation
node

results
node

terminated

L

main

O

C

main

clone

clone

report

exit

move

move

report

exit

main
work

work

1

2

move

clone

report

exit

report

exit

main

work

3

work

get-results

activate

node-1 node-2 node-3

Figure 3: Execution of the example

"node-2"
"node-3"))

Upon successful completion of the program, the collector
contains all reports of the assistants, including those gener-
ated on exit. The application front-end will see the following
results:

1 on node-1 : work

2 on node-2 : work
3 on node-3 : work

3 Implementation and application

We have implemented the Mobile Assistant Programming
model using the WWW framework and the Scheme program-
ming language. The implementation and measured perfor-
mance of MAP primitives are described elsewhere [13].

We have tested and measured our implementation with
an example application that searches for HTML documents
on a set of WWW servers [14]. The application activates
a MAP assistant that clones on each WWW server chosen
by the user in a given domain. A clone accesses all HTML
documents that can be found in the domain starting at a
given root URL. Then, the clone parses the documents and
matches them against the user query. All relevant docu-
ments are included in a report. The application collects the
reports and puts the documents into a temporary local space
of WWWdocuments. After the search is completed, the user
can e�ciently browse all relevant documents, because they
are stored in the local storage.

We have compared the performance of our MAP applica-
tion to the performance of a WWW robot that executes the
same task. The robot retrieves every document from remote
WWW servers and analyzes it locally. Table 1 presents this
performance comparison. In this experiment, 121 HTML
documents (of total size 1300 KBytes) have been accessed
and 14 documents relevant to query keyword:network (of
total size 150 KBytes) have been found. Clearly, moving
document processing closer to data stored at remote WWW
servers and transferring only relevant documents results in
better performance.

MAP application WWW robot
540s 2277s

Table 1: Performance of the application MAP vs. WWW
robot

Our initial experience with MAP and the network appli-
cation developed on top of it shows that signi�cant perfor-
mance improvement can be achieved by moving computation
closer to the data. Our approach also allows nomadic com-
puters to take advantage of the information resources on the
WWW e�ciently. A user can for example run several queries
on interesting topics, disconnect and access the results of the
search at some later time.

4 Related Work

Previous work can be broken down into two broad cate-
gories: distributed programming and programming agents.

Distributed programming has addressed the problem of ex-
ploiting remote resources since the advent of the �rst net-
works. Familiar paradigms include message passing, remote

procedure call, object invocation, and remote evaluation.
Message passing allows development of a communication

application as a set of communicating processes exchanging
messages. However, because the programmer must take care
of all problems at the network level, application develop-
ment is a tedious task [3]. A remote procedure call (RPC)
makes development easier, because it extends the traditional
concept of a procedure call to execute procedure body on a
remote node [5]. Despite many advantages, a remote proce-
dure call fails to solve some semantics problems related to
disjointed execution spaces and node failures [18]. Object-
oriented programming tries to solve some of the problems
by encapsulating code and data in an object as a system
known entity that can be identi�ed, invoked and migrated
[7]. Both paradigms (RPC and object invocation) are well
suited to distributed applications that use �ne-grain oper-
ations on remote nodes in local area networks. However,
they fail to address performance problems related to limited
bandwidth|frequent invocations of �ne-grain operations in-
duce excessive communication tra�c.

Remote evaluation (REV) goes a step further in address-
ing the problem of excessive network tra�c [17, 16]. It is a
technique that allows evaluation of a program expression at
a remote computer. A client sends the server the body of a
procedure and the arguments of the call, whereas in the case
of RPC, only the name of a procedure is sent to the server.
REV can improve performance by reducing communication
between nodes: instead of a sequence of several RPC, REV
can evaluate an expression composed of the sequence of pro-
cedure calls without any communication with the client. A
similar concept was considered by Falcone [8].

Several proposals for mobile code have recently appeared.
Java [2] is an interpreted portable object-oriented language
that allows a client to dynamically download classes and exe-
cute them within its address space. Omniware [10] is similar

to Java and provides a variant of C++ with safety protec-
tion based on software fault isolation. Both proposals are
based on the remote evaluation model and do not provide
any support for computation migration.

The presented distributed programmingmodels do not ad-
dress disconnected operation, node failures and large scale.
In all these models, the client application stays operational
when some execution takes place on a remote node, because
invocation is synchronous. This makes it di�cult to sup-
port disconnected operation of clients. On the contrary, the
MAP model provides asynchronous invocation that allows
disconnected operation of a client.

Another important issue concerns node failures. In tradi-
tional synchronous programming models based on message
passing or RPC, determining a global consistent checkpoint
for a distributed computation is di�cult because of depen-
dency between interacting processes: the caller remains on
a client node whereas the execution request is transferred
to a server node. As a MAP assistant is an autonomous,
asynchronous entity independent of any created clones, its
state is only de�ned by the internal state of the interpreter
and it is con�ned to a single node. Moreover, its state is
independent of the state of other assistants that compose a
distributed computation. So, unlike the synchronous models,
a global consistent checkpoint in MAP can easily be deter-
mined as the union of the checkpoints of all the assistants.
In practice, we do not even need the notion of the global
checkpoint|each assistant can individually rollback to the
last checkpoint and resume its execution.

The last issue concerns large scale. We need to address
the problem of scale by exploiting inherent parallelism. Tra-
ditional synchronous models do not favor large use of paral-
lelism. In MAP, the clone operation allows exploitation of
possible parallelism in a large scale network.

MAP assistants are similar to worm programs [15]. Worm
programs were designed to travel from machine to machine
and do useful work in a distributed environment. A worm
was composed of multiple segments, each running on a dif-
ferent machine. Maintenance mechanisms were responsible
for �nding free machines when needed and replicating the
program for each additional segment. These techniques were
successfully used to support several real applications such as
a real-time animation system. The experience with the worm
programs was more geared towards exploiting idle machines
to run distributed and parallel computations, than providing
a framework for new applications for large scale networks.

A programming agent is a concept that appears frequently
in the context of arti�cial intelligence [9]. It denotes an active
entity with a well-de�ned goal that communicates with its
peers by exchanging messages in an expressive agent commu-
nication language. An agent communication language can be
either declarative or procedural. The declarative approach
frequently used in AI is based on the idea that communi-
cation can be best modeled as the exchange of declarative
statements. Declarative programming has its advantages.
However, as we do not follow this approach, we will not en-
ter into detailed discussion of if here.

In the procedural approach, communication is seen as the
exchange of procedural directives. Scripting languages such
as TCL [12], Apple Events, and Telescript are based on this
approach. For example, a subset of TCL commands - Safe-
Tcl permits the delivery of active e-mail messages that inter-
act with their recipients and take di�erential actions based
on the recipients' responses [6]. Telescript is a software plat-
form for remote programming in an electronic marketplace

[19]. The basic entities are agents and places. An agent is an
active object that carries data and procedures. Agents oc-
cupy places representing real world entities such as a shop or
a box o�ce. Agents can change places using a go instruction
and communicate with other agents using ameet instruction.
In the Telescript execution model, a client and a server are
represented by their respective agents. When an agent wants
some service to be executed on a server, it goes to the server
place and meets the server agent to request the service. Af-
ter accomplishing its mission, the agent returns to the client
place and delivers results. With commercial applications as
a goal, Telescript lays great stress on security: agents and
places are identi�ed by cryptographically authenticated te-

lenames and resource consumption of an agent is controlled
by means of teleticks.

The MAP programming model is similar to Telescript.
However, in Telescript, the execution model is based on
rendez-vous between agents. The details of the meet instruc-
tion are not given in the white paper [19] and it is not clear
how a client agent requests a service from a server agent
(some kind of a communication protocol must be de�ned be-
tween these two entities). In MAP, there is no server agent
that represents a service. Instead, a MAP assistant migrates
to and executes its code on a server node, so that MAP
assistants can be thought of as mobile persistent processes
programmed with a high-level interpreted language. Com-
pared to Telescript, MAP o�ers assistant cloning to exploit
inherent parallelism in a large scale network. Moreover, their
execution is persistent to allow client disconnections and sur-
vival of node and data link failures. Returning results is also
di�erent in MAP: at each stage of the execution an assistant
can report results.

5 Conclusions

We have de�ned a new model for the development and
execution of communication applications in large scale net-
works of heterogeneous computers. The goal of the model
is to enhance the ability of communication applications to
perform complex actions in a large scale network by moving
computation closer to data scattered over servers. The model
takes into account all the important aspects of large scale net-
works like the Internet: large scale, distributed information,
low bandwidth, disconnected operation, server failures, and
heterogeneity. As a result, MAP assistants are mobile, per-
sistent processes that work in parallel to accomplish a useful
task.

We have implemented the Mobile Assistant Programming
model using the WWW framework and the Scheme program-
ming language. Our initial experience with the �rst network
application developed using MAP shows that MAP is a use-

ful paradigm for programming communication applications
in large scale networks. We continue the work on the impor-
tant issues such as wide deployment of execution support for
MAP assistants, controlling execution resources, and secu-
rity.

References

[1] PGP, URL: ftp://ftp.funet.fi/pub/crypt/cryp-

tography/pgp.

[2] The Java language: A white paper, URL: http://-
java.sun.com/ , 1994.

[3] G. Bernard, A. Duda, Y. Haddad, and G. Harrus. Prim-
itives for distributed computing in a heterogenous local
area network environement. IEEE Transactions on Soft-

ware Engineering, 15(12):1567{1578, 1989.

[4] T. Berners-Lee et al. World-Wide Web: The informa-
tion universe. Electronic Networking, 2(1):52{58, 1992.

[5] A. D. Birrell and B. J. Nelson. Implementing remote
procedure calls. ACM Trans. on Computer Systems,
2(1):39{59, 1984.

[6] N. S. Borenstein. EMail with a mind of its own: The
Safe-Tcl language for enabled mail. Internet Draft, 1993.

[7] D. Decouchant and A. Duda. Remote execution
and communication in Guide - an object-oriented dis-
tributed system. In Proc. 2nd IEEE Workshop on Ex-

perimental Distributed Systems, pages 49{53, October
1990.

[8] J. R. Falcone. A programmable interface language for
heterogeneous distributed systems. ACM Transactions

on Computer Systems, 5(4):330{351, November 1987.

[9] M.R. Genesereth and S.P. Ketchpel. Software agents.
Communications of the ACM, 37(7).

[10] S. Lucco et al. Omniware: A universal substrate for
web programming. In Proc. Fourth International World-

Wide Web Conference, Boston, December 1995.

[11] Special Issue on Internet Technology. Communications

of the ACM.

[12] J.K. Ousterhout. An X11 toolkit based on the TCL
language. In Proc. USENIX Association 1991 Winter

Conference, pages 105{115.

[13] S. Perret and A. Duda. Implementation of MAP: A
system for mobile assistant programming. In IEEE In-

ternational Conference on Parallel and Distributed Sys-

tems, Tokyo, 1996.

[14] S. Perret and A. Duda. Mobile assistant programming
for e�cient information access on the WWW. In Proc.

Fifth International World-Wide Web Conference, Paris,
1996.

[15] J. F. Shoch and J. Hupp. The worm programs{early
experience with a distributed computation. Communi-

cation of the ACM, 25(3):172{180, 1982.

[16] J. W. Stamos and D. K. Gi�ord. Implementing remote
evaluation. IEEE Transactions on Software Engineer-

ing, 16(7):710{722, July 1990.

[17] J. W. Stamos and D. K. Gi�ord. Remote evaluation.
ACM Trans. on Programming Languages and Systems,
12(4):537{565, 1990.

[18] A. Tanenbaum. Computer Networks. 2nd edition,
Prentice-Hall, 1989.

[19] J. E. White. Telescript technology: The foundation for
the electronic marketplace. Technical white paper, Gen-
eral Magic Inc., 1994.

