
MOBILE AGENT ARCHITECTURE FOR

NOMADIC COMPUTING

Andrzej Duda, St�ephane Perret
LSR-IMAG,
BP 72,

38402 Saint Martin d'H�eres Cedex, France
e-mail: Andrzej.Duda@imag.fr, Stephane.Perret@imag.fr

ABSTRACT

Our goal is to de�ne a communication architecture for nomadic applications. We notice

that the mobile agent paradigm is particularly suitable for nomadic applications. Al-

though many mobile agent systems are being proposed, few of them raise the problem

of the interface between applications and mobile agents. We propose to use the MAP

(Mobile Assistant Programming) architecture and add a middleware layer that adapts

MAP to nomadic environments. The nomadic adaptation layer provides enhanced ser-

vices to nomadic applications: result collector is managed as a predictif cache, partial

or approximate results may be delivered, and network connections are optimized. An

application controls the layer by de�ning politics to adopt for connection management

and result delivery.

1 Introduction

Main issues in nomadic computing include mobility,
communication performance, and application support.

To achieve nomadicity, a nomadic host should be able
to move from place to place while operating as e�ec-
tively as if it were connected to a �xed network. Mobil-
ity is the distinctive feature of nomadic hosts that may
either use wireless connections to communicate while
moving or connect intermittently to di�erent wired net-
works. The desirable characteristics for nomadicity in-
clude independence of location, of motion, of platform
along with widespread presence of access to services
[13]. This goal can be achieved at the network layer,
for example by means of mobile IP that allows a mo-
bile host to send and receive packets addressed with
its home IP address regardless of its current point of
attachment.

A mobile host may use various communication sup-
ports:

� wireless low bandwidth connections over long dis-
tances (cellular - 2.4 Kbit/s, GSM - 9.6 Kbit/s),

� wireless medium bandwidth connections over small
distances (waveLAN - 2 Mbit/s),

� low bandwidth modem connections (28.8 Kbit/s -
33.6 Kbit/s),

� Internet connections over long distances (variable
bandwidth between 10 bit/s to 10 Kbit/s),

� medium bandwidth local connections (wired LANs
- 10 to 100 Mbit/s),

� high bandwidth local connections (ATM - 155
Mbit/s to Gbit/s).

The connections have di�erent bandwidth, latency,
cost, and quality of service (error rate, jitter) and for
some of them the parameters may vary over time. It
is important for a nomadic host to view communica-
tion support in a integrated way that adjusts to vary-
ing characteristics, optimizes the cost of its usage, and
treats disconnections or link failures in a transparent
way.

Communication performance is crucial for nomadic
hosts. Even if we are able to integrate di�erent types
of connections and optimize their usage, for many no-
madic applications low bandwidth network connections
may become a bottleneck. For example, a browser ac-
cessing WWW documents over GSM 9.6 Kbit/s con-
nection will be strongly limited by this bandwidth. Ex-
periments have shown that even using a specialized pro-
tocol, the useful application bandwidth is at most 8.7
Kbit/s [10]. The only way to increase performance is
to change the computing paradigm at the application
level.



A communication architecture for nomadic hosts
must take into account application requirements. As
the WWW has become an operational prototype of the
Information Infrastructure, information access is cur-
rently one of the most important applications on no-
madic hosts. Such applications rely on information �l-
tering: searching for relevant information, resource dis-
covery, querying databases and may bene�t from new
paradigms such as programming by delegation.

We are interested in communication and application
support for nomadic computing. We propose an ap-
proach based on mobile agents to the design of a com-
munication architecture for nomadic applications. This
paradigm makes use of mobile agents that a nomadic
application activates to execute tasks on remote nodes.
Mobile agents move from node to node, perform useful
operations and report results. The paradigm is intrinsi-
cally asynchronous|an application can disconnect af-
ter agent activation and retrieve results later on. Asyn-
chronous mode can also provide important performance
gains. Agents and results are persistent in the sense
that they are not lost because of node crashes or link
failures.

We have de�ned and implemented an architecture
for mobile agents called Mobile Assistant Programming
(MAP) [22]. The implementation is based on the
WWW framework and the Scheme programming lan-
guage [21]. Initially, MAP has been designed for in-
formation access applications for large scale networks
[23]. MAP assistants are high-level interpreted pro-
grams that can move between nodes, create clones and
report results. Their execution is asynchronous and
persistent to allow client disconnections and survival
of node failures. Moving, cloning, and reporting re-
sults are atomic actions having transactional semantics.
Many other systems supporting mobile agents appear
(see Section 5). One of their motivations is nomadic
computing. However, providing mobile agents is not
enough|there is a gap between nomadic applications
and mobile agent systems that should be �lled by an
intermediate layer.

In this paper, we propose to use the MAP architec-
ture for nomadic applications. We de�ne a middleware
layer that adapts MAP to nomadic environment. The
nomadic adaptation layer provides application support
by means of mobile agents and takes care of optimized
network connection management. The layer acts as a
proxy of a application for agent activation and result re-
trieving. It makes results visible to an application after
processing them according to application requirements.
An application controls the layer by de�ning politics
to adopt for connection management. For example, an
application may specify the acceptable quality loss of
some types of data or the function for optimization of
connection cost. The application may also de�ne how
results must be interpreted to provide approximate or
partial results to the user.

In the remainder of this paper, we present the Mobile
Assistant Programming architecture (Section 2), dis-
cuss issues related to the design of an architecture for
nomadic applications (Section 3), de�ne the nomadic
adaptation layer (Section 4), discuss related work (Sec-
tion 5), and outline conclusions (Section 6).

2 Mobile Assistant Programming

We consider a large scale network composed of nodes
connected via communication links. Nodes are virtual
processors with memory and secondary storage. The
MAP architecture is based on mobile agents that we
call assistants. Figure 1 presents the principles of the
MAP programming model. An application activates an
assistant program on a remote node to accomplish a
complex task. An interpreter interprets the assistant
program and its execution state can be saved to persis-
tent storage (this action is called a checkpoint). In case
of a node failure, assistants are restored from persistent
storage automatically. To accomplish its task, an as-
sistant moves to a remote node, clones other assistants
and reports results. The results are collected in a result
collector, a persistent object located on any node in the
system and unique for an activation. An application
can get results from the collector.

Figure 2 presents an example of an application that
runs on a nomadic host and several WWW servers. The
user activates an assistant in Paris, goes to Boston while
the assistants execute in the network and requests the
results on arrival in Boston.

Figure 3 presents the functional architecture of the
model. It is composed of four layers: application front-
end layer that provides user interface, activates assis-
tants, and checks for results, assistants layer that per-
forms work for the application and is programmedusing
MAP primitives, MAP primitives layer that provides
basic MAP operations, and system support layer that
takes care of checkpointing and communication.

2.1 Assistant Primitives

The assistant layer provides primitives for controlling
an execution:

� activate source-code activate-node result-node
activate primitive initializes the execution of an as-
sistant on a given node. An application provides
source code to interpret and speci�es a result node
where a collector object is created. A capability
for the collector is returned to the user for later
retrieval of results.

� get-results collector-capability
get-results primitive uses the collector capability
to retrieve the results of an execution. The prim-



Map

Information
& Services

Map

Collector

Map

Information
& Services

Information
& Services

report clone

Assistant

Application

Results

MAP node

MAP node

MAP node

MAP node

get-results

abort

activate
move

report

Figure 1: Principles of MAP

Node
Activation

Node
Results

MAP node

World Wide Web

activate

move move

move report

report

move

Nomadic Host
Nomadic Host

front-end front-end

clone

Boston
Paris

results

get-results

assistant

Figure 2: An example application



Assistants

clone
report

move

save

post
restore

get-results
abort

activate

MAP Primitives

System Support

Application front-end

Figure 3: Functional architecture of MAP

itive detects the termination of all assistants as-
sociated with the given collector. The termination
detection is based on the graph of assistant cloning
constructed from the information provided by each
assistant when it exits: the identity of its creator
and the number of clones it has created. If all the
results are not yet available, the primitive returns
partial results and status not-terminated. If all the
reports are available, the primitive returns the re-
sults and status terminated.

� abort collector-capability
abort primitive uses the collector capability to ter-
minate the execution of an assistant. The primitive
detects the termination of all assistants associated
with the given collector. If the execution is not ter-
minated, it forces all the assistants to terminate.

2.2 MAP primitives

Assistants can use MAP primitives during the execu-
tion. The MAP primitives are as follows:

� move node
move primitive transfers an assistant to a remote
node. The execution state of the interpreter is
saved to persistent storage, moved to the node us-
ing the post system operation and restored at the
target node. The operation uses an authentication
scheme to verify if the assistant is allowed to exe-
cute on the target node. If for any reason the assis-
tant cannot move to the target node (for example
the access is denied or post fails), the primitive re-
turns appropriate status. A checkpoint is created
on the target node and the assistant resumes ex-
ecution. After the primitive, the current state of
the assistant is con�ned to the target node. The
primitive executes as an atomic action.

� clone id node
clone primitive creates a copy of an assistant with
a given identi�er on a given node. Both the cre-
ator and the clone assistants are checkpointed. The
clone assistant begins its execution independently
from its creator. The creator keeps track of all its
clones.

� report msg
report primitive reports a message to the collector
object using the post system operation. A check-
point is taken after reporting.

� break exception
break primitive terminates the execution of an as-
sistant. The information about all clones created
by the assistant is reported to the result collector
object. It returns the exception status.

� node

node primitive returns the identi�er of the node
where an assistant executes.

� identity

identity primitive returns the identi�er of an assis-
tant.

� exit

exit primitive stops the execution of an assistant.
The information about all clones created by the
assistant is reported to the result collector object,
so that the termination of all assistants can be de-
tected.

2.3 System support operations

The MAP primitives require some system support
for checkpointing and communication. They are used
by the MAP primitives, but they are not accessible by
the programmer. The system support operations are as
follows:

� save

save operation creates a checkpoint by saving the
execution state of the interpreter to persistent stor-
age.

� restore

restore operation resumes execution by restoring
the state of the interpreter from persistent storage.
This operation is also done automatically after a
node failure for all active assistants - they are re-
stored from the last checkpoint.

� post

post operation transfers data to a remote node.
The operation takes into account node failures or
disconnections and it tries to deliver the data even
in such cases. It also implements an authentication
scheme based on digital signatures.



2.4 Discussion

In the MAP model, assistants are asynchronous in-
dependent entities. They execute in parallel, inde-
pendently of one another. There is no communi-
cation between assistants and each assistant reports
results directly to the collector. Reporting is also
asynchronous|each assistant can generate as many re-
ports as it wishes at any time. Persistent execution
of assistants is based on checkpointing|the execution
state of an assistant is saved to persistent storage.
When an assistant executes a primitive that modi�es
its external environment such as move, clone, or report,
a checkpoint is taken in the primitive. The primitive
and the checkpoint are executed as one transactional
atomic action, so that an assistant can be restored af-
ter a node failure in a consistent state and continue its
execution. After a failure, a node restores all the assis-
tants that were active before a failure. This mechanism
allow assistants to progress in computation in spite of
node failures.

2.5 Implementation

We have implemented the Mobile Assistant Pro-
gramming model using the WWW framework and the
Scheme programming language [21]. As we were in-
terested in applications that access data distributed
over the Internet, WWW was an obvious choice for
the �rst prototype. The implementation is based on
the HTTP POST method and CGI scripts. The POST
method provides a means for transferring information
to a WWW server and a CGI script provide support
for executing MAP primitives. Scheme has many ad-
vantages: it is a fully 
edged programming language
with �rst-class procedures. The source code for its in-
terpreter is widely available and it can run on many
heterogeneous platforms [28].

A MAP node is a WWW server that runs the httpd
daemon and provides MapServer|a CGI script with
the following components: the modi�ed Scheme inter-
preter, functions implementing MAP primitives and a
local service interface. The implementation is based on
three elements:

� interpretation support: to interpret assistant pro-
grams, we provide a modi�ed Scheme interpreter.
We have removed some Scheme functions that
are unsafe, such as interactive primitives (reset)
and primitives to access operating system facilities
(open, read, write). We have added all MAP
primitives as well as a set of primitives for access-
ing and processing HTML documents.

� communication support: to transfer data between
nodes we use the standard WWW HTTP proto-
col. The data may be either a source code, the
encoded execution state of an assistant, a result

report, or a control message. The data are signed
digitally and sent via the HTTP POST to a remote
MapServer CGI script. The httpd daemon on the
remote node starts the script and passes the data
to the MapServer in an environment variable.

� distributed execution support: the MapServer CGI
script implements the assistant primitives: acti-
vate, get-results, abort.

3 Architecture for Nomadic Applica-

tions

The initial goal of the MAP architecture was to pro-
vide 
exible mechanisms for programming applications
accessing distributed data in large scale networks such
as Internet. The characteristics of the networks greatly
in
uenced our design:

� to allow disconnected operation, an assistant is an
asynchronous process: the user activates an assis-
tant and gets results at some later time;

� to reduce network tra�c, an assistant moves to a
remote node and executes operations on data lo-
cated on that node.

� to accommodate large scale, an assistant can clone
other assistants that execute in parallel as au-
tonomous and independent entities;

� to cope with node failures, an assistant is a persis-
tent process: its execution state is saved and can
be restored in the case of a node failure;

� to deal with heterogeneity, an assistant is a high-
level interpreted program.

Nomadicity raises additional issues that must be taken
into account:

� mobility support
A communication architecture for nomadic hosts
must provide independence of location, of motion,
of platform along with widespread presence of ac-
cess to services.

� varying network parameters
Nomadic hosts communicate using di�erent sup-
port networks with variable parameters of band-
width, latency, error rate, and cost. A nomadic
host must adjust automatically to varying condi-
tions in a transparent and integrated fashion.

� communication performance
Network resources are critical for nomadic hosts,
because their bandwidth may be narrow (especially
for wireless connections) and must be optimized.



Memory
Stable

CGI

Application

MapServer

HTTPDHTTP

activate get-results abortApplication Front-end

post operation

POST method

Interpreter
Scheme

Figure 4: Implementation of MAP

� connection management
A nomadic host must treat disconnections or link
failures in a transparent way.

� application requirements
Applications need some system support to deal
with nomadicity. The type of support depends on
application requirements. We can notice that in-
formation access becomes one of the most impor-
tant application on nomadic hosts.

Mobility is a major issue in nomadic communication.
It should be integrated in a transparent way indepen-
dently of location. This goal can be achieved at the net-
work layer, for example by means of mobile IP [19, 5].
This solution allows a mobile host to send and receive
packets addressed with its home IP address regardless
of its current point of attachment. It maintains com-
munication association such as TCP connections even
if the point of attachment changes during their lifetime.
Mobile IP is based on tunneling of IP packets between
a home agent connected to the home network and a
mobile host.

Communication when moving can be achieved using
wireless networks such as GSM or wireless LAN. Trans-
mission quality is variable depending on the placement
of a mobile host. Communication cost is usually im-
portant and should optimized.

To deal with mobility and intermittent connections,
a mobile host needs a middleware layer that provides a
uniform view of underlying networks and optimizes its
usage. Kleinrock has proposed a layered architecture
for nomadic communications [12, 13]:

� Open Data Network layer that provides access to
di�erent communication substrates,

� Transport Services layer that provides di�erent
end-to-end transport services,

� Middleware layer that provides services for no-
madic applications,

� Application layer.

The Middleware layer proposed by Kleinrock
presents a MIMI interface (Middleware/Middleware In-
terface) that provides services speci�c to nomadic ap-
plications such as:

� autonomous agents for execution of tasks in the
network,

� predictive cache for prefetching data to a nomadic
host,

� approximator to provide approximative or partial
results and to adapt the quality of service to avail-
able network resources,

� disconnected execution queuer to manage connec-
tions and disconnections,

� security services to authenticate and authorize ac-
cess,

� performance management to inform applications
about resource consumption and advise on their
optimal usage,

� location management to help to localize network
services.

The MIMI interface supposes that nomadic applica-
tions become aware of mobility and of some problems
related to communication. For example, an application
may want to negotiate its quality of service according
to available connections or even ask for incomplete or
approximative results if complete results are unavail-
able or too expensive to obtain. In this way, a nomadic
application can work in an adaptive manner|adjust
its behavior according to varying conditions of network
resources.

A communication architecture for nomadic hosts
should also take into account di�erent types of applica-
tions and provide support for them. The most impor-
tant applications nowadays and in the future are the
following [15]:



� �ltering of information: information access appli-
cations must be able to �lter abundant information
and identify relevant information,

� �ltering of asynchronous communications: we are
submerged by asynchronous communications such
as e-mail; it becomes crucial to be able to �lter
messages, assign priorities, and process messages
according to the priorities.

� scheduling of synchronous interactions: syn-
chronous communications are sometimes more
e�cient than messages (for example a video-
conference session) and it is important in this case
to schedule them.

Our goal is to consider these types of applications in
a nomadic environment. We can notice that the mobile
agent paradigm is particularly suitable for a nomadic
communication architecture presenting the MIMI inter-
face. First of all, communication performance can be
increased|since the size of results is usually smaller
than data themselves, less data need to be transmitted
over the network. A nomadic host is usually resource-
poor relative to static hosts. Delegating work to a more
powerful server may improve application performance.
Moreover, network connections can be managed in an
advantageous way, for example, we can process results
before transmission to a nomadic host to match avail-
able bandwidth: the results can be compressed or ad-
justed to desired quality (e.g. image resolution that
�ts the screen on a nomadic host). We can also group
data to minimize connection time. The asynchronous
interaction between an application and agents allows a
nomadic host to deal with disconnections in an e�cient
and robust manner. The asynchronous mode can also
increase performances perceived by the user. The user
activates actions in the network and access results later
on when they are stored locally on its nomadic host.
Local access is much faster than the remote one, so the
response time is much better.

Based on the mobile agent paradigm, we can design
the functions corresponding to services needed by no-
madic applications. Hence, we propose to add a mid-
dleware layer to the MAP architecture. The layer pro-
vides enhanced services to nomadic applications: re-
sult collector is managed as a predictif cache, partial
or approximate results may be delivered, and network
connections are optimized. We suppose that at the net-
work layer the architecture is supported by a low-level
mobility support such as mobile IP.

4 Nomadic Adaptation Layer for MAP

The MAP architecture provides support for mobile
agents: assistant activation and result retrieving. To

Assistants

control

get-results
activate

notify

abort

clone
report

move

save

post
restore

get-results
abort

activate

MAP Primitives

System Support

Application Front-end

Nomadic Adaptation Nomadic Adaptation
Connection

Optimization
Protocol

Figure 5: Nomadic Architecture

adapt it to a nomadic environment, we add functions
for connection management and optimization.

We have considered two ways of how to adapt MAP
for nomadic hosts. The �rst one consists of considering
a nomadic host as a MAP node (i.e. the node where an
assistant can execute) and add connection management
and optimization to the post system support operation.
An application could activate assistants on a nomadic
host and transfers to other MAP nodes would be op-
timized. This solution is based on a uniform, homo-
geneous views of all the nodes|the optimization code
would be executed for all transfers, even if some con-
nections do not need such a functionality.

The second way is to consider a nomadic host as
a special case. A nomadic host communicates with a
stationary MAP node using a connection optimization
protocol. This approach places functions exactly where
they are needed and does not add any supplementary
cost to the transfers inside the network of stationary
MAP nodes. For these reasons, we have chosen the
second approach.

Adding new functions to the interface for applica-
tions means that the applications become \nomadic-
ity aware". For example, they will be able to manage
connections at a high-level and to receive noti�cations
related to the state of network resources and adapt to
varying conditions.

Figure 5 presents the MAP architecture enhanced
with the nomadic adaptation layer. On a nomadic host,
the layer o�ers the interface for assistant activation, re-
sult retrieving, and connection management. Figure 6
illustrates the principles of the nomadic architecture.
There are three types of entities: a nomadic host, a
MAP base, and a MAP node. A nomadic host cooper-
ates with a MAP base by using a connection optimiza-
tion protocol. For applications on a nomadic host, the
nomadic adaptation layer acts as a proxy for assistant
activation and result retrieving. It makes results vis-
ible to an application after processing them according
to application requirements. An application controls



the layer by de�ning politics to adopt for connection
management or for result processing. The layer noti�es
applications on connection states.

In addition to the functions presented in Section 2,
the MAP interface o�ers the following primitives:

� control attribute pro�le code
the control primitive passes to the connection
manager a pro�le de�ning a connection attribute.
The application may provide some code to process
data before the transfer.

� notify attribute value
the notify primitive returns the value of a given
connection attribute.

The connection manager cooperates with the MAP
base by means of a connection optimization protocol.
The protocol maintains information about connection
attributes and acts according to the control speci�ca-
tion expressed by an application. The protocol can pro-
cess data on a nomadic host or on the MAP base before
the transfer: compression, quality degradation, or any
other operation requested by the application.

Connection pro�les de�ne politics to adopt for con-
nection optimization and specify They specify cost cri-
teria or operations to perform on data. A pro�le may
specify how the connection attribute should be opti-
mized. For example, an application may de�ne that
the time of a GSM connection must be minimized by
compressing and grouping data to be transfered. An
application may also de�ne how results are to be pro-
cessed before the transfer to the nomadic host. For ex-
ample, it may specify that data of image/jpeg MIME
type should be degraded in resolution to �t the screen
of a nomadic host. It may also specify how to provide
approximate results, or how to obtain partial results.

The connection manager implements a predictif
cache of the result collector with the help of the con-
nection optimization protocol. It manages the transfer
of results to the nomadic host while optimizing net-
work connections. The transfer is a series of atomic ac-
tions having transactional semantics|communication
progresses despite host crashes or connection failures.

Noti�cations allow applications to supervise connec-
tion states, the level of network resource consumption,
and to know what part of results is already available on
a nomadic host.

4.1 Current status

The MAP architecture has been implemented and
the prototype on the WWW is operational (http://-
fidji.imag.fr/map/access.html). Currently, we are
implementing the nomadic adaptation layer using a set
of laptops connected via GSM connections as a plat-
form. A MAP base is a workstation connected to a
wired LAN. E�cient WWWaccess is our pilot nomadic

application that we use to validate the architecture: the
user may specify a set of URLs and a query containing
keywords, document update times, and the deepness of
hyper-text links. The application activates assistants
and may disconnect. The assistants follow hyper-text
links starting from the initial URLs and gather all the
relevant documents up to the speci�ed deepness of links.
When the user connects to the MAP base, the results
are transferred to the nomadic host in a optimized way
and the user access the documents e�ciently. The user
may specify additional result processing, for example,
the quality of large volume data types such as images
or video may be degraded.

We also explore how mobile agents can be used to
schedule interactive multimedia interactions. For ex-
ample, an application may activate agents to organize
a video-conference, prepare video streams, and when
all participants are ready, start video streams. An ap-
plication may specify the quality of service parameters
of multimedia streams that match current connection
bandwidth of a nomadic host.

5 Related Work

Related work can be divided into several categories:
communication protocols for nomadic hosts, support
for nomadic applications, and mobile agents.

Much work has been done in the area of communica-
tion protocols for nomadic hosts. The �rst problem
that the protocols must solve is mobility. As men-
tioned previously, existing solutions for mobility ap-
pear mainly at the network layer: mobile IP [19, 5]
or IPv6 [20, 26]. The second problem is performance.
Many projects try to optimize performance over low-
bandwidth wireless connections [2] or propose speci�c
protocols [10, 3]. However, the bandwidth of such con-
nections limits application performance regardless of
the optimized or speci�c protocols. Important perfor-
mance improvement can only be done based on a dif-
ferent computing paradigm.

Nomadic hosts need not only speci�c communication
support, but also support for applications. Coda is a
�le system that allows disconnected operation [11]. It
uses optimistic replication to provide continuous ser-
vice to the users on a nomadic host. Bayou provides
support for sharing data among mobile users [6]. Rover
that combines relocatable dynamic objects and queued
remote procedure calls to provide a uniform distributed
object architecture for code shipping, object caching,
and asynchronous object invocation [9]. Travler focuses
on developing models, prototyping systems software,
and running experiments in support of those capabili-
ties needed by a mobile user [14]. Ward is a model for
replication in mobile environments [24].

A lot of work is being done in the area of mobile
agents. The mobile agent paradigm o�ers many advan-



Map

Information
& Services

Map

Collector

Map

Information
& Services

Assistant

Collector

Information
& Services

Map
activate

get-results

control

notify
Application

report

report

move

clone

Résultats

MAP node

MAP node

MAP base

MAP base
Nomadic host

Connection

Management

Connection
Optimization

Protocol

Figure 6: Principles of the Nomadic Architecture

tages with respect to traditional distributed program-
ming models such as message passing, remote procedure
call, object invocation, and remote evaluation. A pro-
gramming agent is a concept that appears frequently in
the context of arti�cial intelligence [8]. It denotes an ac-
tive entity with a well-de�ned goal that communicates
with its peers by exchanging messages in an expressive
agent communication language. An agent communica-
tion language can be either declarative or procedural.
The declarative approach frequently used in AI is based
on the idea that communication can be best modeled as
the exchange of declarative statements. In the proce-
dural approach, communication is seen as the exchange
of procedural directives. Scripting languages such as
TCL [16], Apple Events, and Telescript [29] are based
on this approach.

Several recent works explore Java as a platform for
mobile agents. Java is an interpreted portable object-
oriented language that allows a client to dynamically
download classes and execute them within its address
space [1]. Mobile agent systems based on Java include
Aglets [4], Concordia [30], JAE [17], Ara [18], and Mole
[27]. All these systems have similar features as MAP,
however MAP provides persistence and failure resilience
based on transactional semantics. Other interesting
work include the OMG proposal [4] and a system for
WWW access over wireless links [7].

Research on mobile agents is very active. Many re-
search groups work on new mobile agent systems. How-
ever, the question of how a given system is used by
application has not been raised (none of the presen-
tations at a recent workshop has tackled the problem
[25]). Once we have such a support, we realize the need
for a middleware layer that provides to nomadic appli-
cations management and control functions over agents.

6 Conclusions

The objective of this paper is to de�ne a middleware
architecture for nomadic applications. Nomadic appli-
cations may bene�t from the mobile agent paradigm.
However, we must add an intermediate layer between
applications and mobile agents. Having gained experi-
ence with a mobile agent system called MAP, we have
proposed to add an adaptation layer that provides en-
hanced services to nomadic applications: result collec-
tor is managed as a predictif cache, partial or approxi-
mate results may be delivered, and network connections
are optimized. An application controls the layer by
de�ning politics to adopt for connection management
and result delivery.

REFERENCES

[1] The Java language: A white paper, URL:
http://java.sun.com/ , 1994.

[2] H. Balakrishnan et al. A comparison of mecha-
nisms for improving TCP performance over wire-
less links. In Proc. ACM SIGCOMM Conference,
Stanford, 1996.

[3] K Brown and S. Singh. M-UDP: UDP for mo-
bile cellular newtroks. ACM SIGCOMM Computer
Communication Review, 1996.

[4] D.T. Chang and S. Covaci. The OMGmobile agent
facility. In 1st Int. Workshop on Mobile Agents,
pages 62{73, Berlin, 1997.

[5] S. Cheshire and M. Baker. Internet mobility 4x4.
ACM Computer Communication Review, 26(4),
1996.



[6] A. Demers et al. The Bayou architecture: Support
for data sharing among mobile users. In Workshop
on Mobile Computing Systems and Applications,
Santa Cruz, CA, U.S., 1994.

[7] W.-S. E.Chen and Y.-N. Len. Intelligentmessaging
for mobile computing over the World-Wide Web.
In 2nd Workshop on Mobile Computing, 1996.

[8] M.R. Genesereth and S.P. Ketchpel. Software
agents. Communications of the ACM, 37(7).

[9] A.D. Joseph et al. Rover: A toolkit for mobile
information access. In Proc. Fifteenth Symposium
on Operating Systems Principles, 1995.

[10] J. Kiiskinen, et al. Data channel service for wire-
less telephone links. IEEE Bulletin on Operating
Systems and Application Environments, 8(1):3{12,
1996.

[11] J. J. Kistler and M. Satyanarayanan. Disconnected
operation in the Coda �le system. ACM Transac-
tions on Computer Systems, 10:3{25, 1992.

[12] L. Kleinrock. ARPA PI meeting presenta-
tion, URL: http://millennium.cs.ucla.edu-

/LK/lkpimtgfla795/index.html. 1995.

[13] L. Kleinrock. Nomadic computing|an oppor-
tunity. ACM Computer Communication Review,
25(1):36{40, 1995.

[14] L. Kleinrock, et al. Travler: System support for no-
madic computing,URL: http://ficus-www.cs.-
ucla.edu/travler/. 1996.

[15] D.G.Messerschmitt. The convergence of communi-
cations and computing: What are the implications
today? IEEE Proceedings, august 1996.

[16] J.K. Ousterhout. An X11 toolkit based on the
TCL language. In Proc. USENIX Association 1991
Winter Conference, pages 105{115.

[17] A. Park and S. Leuker. A multi-agent architecture
supporting services access. In 1st Int. Workshop
on Mobile Agents, pages 62{73, Berlin, 1997.

[18] H. Peine and T. Stolpmann. The architecture of
the Ara platform for mobile agents. In 1st Int.
Workshop on Mobile Agents, pages 50{61, Berlin,
1997.

[19] C.E. Perkins. IP mobility support, draft-ietf-
-mobileip-protocol-16.txt. 1995.

[20] C.E. Perkins and D. Johnson. Mobility support in
IPv6, draft-perkins-ipv6-mobility-sup.stxt.
1996.

[21] S. Perret and A. Duda. Implementation of MAP:
A system for mobile assistant programming. In
IEEE International Conference on Parallel and
Distributed Systems, Tokyo, 1996.

[22] S. Perret and A. Duda. MAP: Mobile assistant
programming for large scale communication net-
works. In IEEE International Communications
Conference 96, Dallas, 1996.

[23] S. Perret and A. Duda. Mobile assistant pro-
gramming for e�cient information access on the
WWW. In Proc. Fifth International World-Wide
Web Conference, Paris, 1996.

[24] P. Reiher et al. Peer-to-peer reconciliation based
replication for mobile computers. In 2nd ECOOP
Workshop on Mobility and Replication, 1996.

[25] K. Rothermel and R. Popescu-Zeletin. Mobile
Agents, Proceedings of the 1st International Work-
shop. Berlin, 1997.

[26] W. Simpson. IPng mobility considerations. RFC
1688, 1994.

[27] M. Straser et al. Mole: a Java based mobile agent
system. In 2nd ECOOP Workshop on Mobile Ob-
ject Systems, Linz, 1996.

[28] W. Clinger and J. Rees. Revised report on the al-
gorithmic language Scheme. ACM SIGPLAN No-
tices, 21(12):37{79, 1986.

[29] J. E. White. Telescript technology: The foun-
dation for the electronic marketplace. Technical
white paper, General Magic Inc., 1994.

[30] D. Wong et al. Concordia: An infrastructure for
collaborating mobile agents. In 1st Int. Workshop
on Mobile Agents, pages 86{97, Berlin, 1997.


