
GateScript: A Scripting Language for Generic
Active Gateways

Hoa-Binh Nguyen and Andrzej Duda

LSR-IMAG Laboratory
Institut National Polytechnique de Grenoble
BP. 72, 38402 Saint Martin d’Hères, France
{Hoa-Binh.Nguyen, Andrzej.Duda}@imag.fr

http://drakkar.imag.fr

Abstract In this paper, we present GateScript, a scripting language for
active applications to be executed on generic active gateways. Unlike
other active networking platforms, it offers a simple scripting language
for expressing custom processing of packets at different protocol layers
without the need for interpretation of complex protocol data structures.
In this way, the user writes statements in a script-like language while
using protocol-specific variables and predefined function calls acting on
the packet’s content. From a textual description, we automatically create
a packet parser and reassembler for a given protocol. The parser decom-
poses PDUs arriving in an active application into protocol variables that
can be used in the script language. After processing, outcoming packets
are reconstructed from the protocol variables. GateScript also enables
active applications to react to the state of the environment: they can
receive events from monitors and test variables reflecting the state of the
environment.
We have designed an architecture for a generic active gateway (GAG)
that supports GateScript. An active application can dynamically in-
stall/remove a packet filter that intercepts relevant packets and passes
them to the application. We have implemented GAG on Linux: its packet
forwarding part is implemented in the kernel and all other components
as user space processes.

1 Introduction

In our work, we address the problem of customizing user flows in active gateways
at the border of the network infrastructure. Unlike traditional proxy nodes, ac-
tive gateways provide transparent processing of data streams without the need
of configuring client hosts. An active gateway may be placed in the access net-
work, for example in the last router connected to a LAN. Many applications
may benefit from custom processing physically located close to the client host,
especially if it has limited resources. Consider for example small mobile devices
that require some adaptation or reaction to changing conditions, and pervasive
environments with various devices such as sensors or actuators—an active gate-
way can provide additional processing in the fixed network infrastructure. In

2 Hoa-Binh Nguyen, Andrzej Duda

some cases, we may even want to place the gateway functionality on the end
system, so that the user can easily control, filter, or adapt flows arriving to the
device.

We have designed and developed GateScript, a scripting language for easy
programming of active applications that process packets in active gateways. Al-
though there are several platforms for adding programmability to a network
node, usually they are programmed in a full-fledged programming language such
as Java [8,18], C [5,21], or TCL [1]. Moreover, many platforms require kernel
modules or plugins to be developed [13,14], which can be done by experts, but it
is too tedious for most of users. With GateScript we want to offer a simple script-
ing language for expressing custom processing of packets at different protocol
layers without the need for interpretation of complex protocol data structures.
In this way, the user just writes a script that uses variables relative to a given
protocol and calls predefined functions working on the packet’s content.

More specifically, GateScript provides a higher level view than traditional
languages and automates the tasks of interpreting/constructing data packets.
Coupling protocol variables to values in a received packet is automatically done
by a packet parser generated from a formal description of a protocol. The vari-
ables available to script programs represent either protocol header fields (e.g.
$http.content type for a HTTP Reply or $tcp.window for a TCP segment)
or elements of the packet data content (e.g. $html.title for the title HTML
markup). When some values of variables are detected in a packet by the protocol
parser, they are made available to a script program so it can take some action or
modify them. Simple statements allow to test the values contained in a packet
and invoke functions able to modify its content or perform other actions such as
packet duplication or drop.

With GateScript, we also explore the possibility of coupling the behavior of an
active gateway with the state of the environment. Some active applications that
we call proactive are able to dynamically react and adapt to varying conditions
[17]. They cooperate with monitors, special entities that observe the state of the
network, routers, or hosts. GateScript proposes a statement for waiting for an
event to execute some operations when a monitor signals an event.

To support GateScript, we have designed and implemented an architecture for
a generic active gateway called GAG. An active application can install a packet
filter that recognizes some packets according to the information in the packet
header and passes them to the application. Then, it is parsed and the GateScript
engine interprets the code of a script that processes the packet. Intercepting
packets can be activated and disabled dynamically, so that there is no overhead
for forwarding packets that do not require active processing.

We have implemented GateScript in Java and GAG on Linux. GateScript
currently integrates two generators of packet parsers: one based on Flavor [6]
oriented towards bitstream protocols and a second one based on JavaCC [12] for
text oriented protocols. The packet forwarding part of GAG is implemented in
the kernel and all other components, such as scripts written in GateScript, are
user space processes. We have experimented with GateScript by implementing

GateScript 3

several example active applications enhancing the behavior of transport and
application level protocols. Even if the performance was not our primary goal,
we have evaluated the overhead of intercepting packets in GAG and compared
the processing performance of GateScript with a standard HTTP Java-based
gateway such as Muffin [15].

In this paper, we present the main features of GateScript and illustrate their
use by some examples. We do not cover many other aspects such as secure
deployment of scripts on active nodes, control of active applications, node ad-
ministration, event generation by monitors, and experimentation with active
applications specialized for different protocols.

The paper is organized as follows. Section 2 introduces the architecture of
GAG. We describe GateScript in Section 3 and present its implementation in
Section 4. Section 5 reports on our experience and presents a first evaluation
of the prototype. We discuss the related work in Section 6. Finally, we draw
conclusions in Section 7.

2 Generic Active Gateways

A generic active gateway needs to provide general support for processing the
content of different data flows and customizing the behavior of protocols. We
consider transparent gateways that are network nodes acting in a similar way
to routers: data packets are not directly addressed to them, rather they are
forwarded to a destination after processing some of them. The gateway forwards
packets in a usual way based on standard routing tables or according to the
effect of active packet processing.

Usually a gateway implementing active applications performs some packet
parsing, processing, and reconstruction while all these functionalities are com-
bined in the same piece of code. Our approach consists of separating packet
parsing and reconstruction from data processing to make them generic so that
they can be used for any bit oriented or textual protocol. The generic part of
an active gateway can be specialized for a given protocol or data flow based on
the structure of a PDU (Protocol Data Unit) defined by the protocol1. Examples
of such a use are intelligent HTTP, RTSP, or SIP proxies, media transcoding
gateways (e.g. from HTML to WML), or adaptation gateways (e.g. from MPEG
to H.263).

An active gateway needs to support the following functionalities (we illustrate
them with examples in the context of HTTP when relevant):

• Active applications need to execute some code upon the arrival of a packet
or when the state of the system changes (e.g. when receiving a HTTP Reply,
check for the MIME type of the message body and filter out all images). The

1 We use the term of a packet to designate the PDU entering an active gateway. A
packet may contain encapsulated PDUs defined by higher level protocols, e.g. a TCP
segment containing a HTTP Reply. When describing the protocol parsing part within
GateScript, we will use the term of a PDU.

4 Hoa-Binh Nguyen, Andrzej Duda

code of an active application should involve variables variables proper to a
given protocol (e.g. an active application should be able to test the MIME
type of the HTTP message body).

• The value of a variable used in an active application should be set to the
value of a PDU field assigned when a packet is received by the gateway (e.g.
variable $http.content type should be set to the value image/jpeg for a
HTTP Reply containing a JPEG image).

• A rich library of functions able to process specific data types should be
available to active applications (e.g. ReduceImageSize or TranscodeVideo
for processing objects in a HTTP Reply).

• We need means for dynamically enable or disable processing of packets pass-
ing through a gateway to obtain good performance when custom processing
is not required.

• Active applications require support for reacting to changes in their environ-
ment such as network congestion, host disconnection, lack of resources (e.g.
when a client host changes the access network, it may request to change
processing of packets, because of the increased available bandwidth).

Variables

PDU Parser

GateScript
Engine

 packet

script

Values

Code
Functions

Incoming
packets

 packet

PDU Reassembler

Active Application

Monitors

Values

Matching Engine

Generic Active Gateway

Forwarding Kernel
Packet
Filter

Outcoming
packets

user space

kernel space

Fig. 1. Architecture of GAG

The architecture of GAG, a generic active gateway supporting GateScript is
presented in Figure 1. GAG is composed of the following entities:

GateScript 5

• Active applications that process some packet data. They are programmed us-
ing the GateScript scripting language. The script program involves variables
proper to a given protocol or representing the state of the environment.

• A GateScript engine for executing a script program once the variables used in
the program have their values assigned. It couples a script program with the
variables recognized in data packets and with the functions able to process
them.

• Protocol variables that represent fields defined in the PDU structure of a
given protocol or some parts of the packet content. Protocol variables are
predefined for any given protocol.

• A PDU parser for recognizing the structure of a given PDU contained in a
packet, parsing the data contents, and setting up variables used by the script
program of active applications.

• A PDU reassembler to reconstruct a data packet from the variables used
by the script program (the inverse function to the PDU parser). The PDU
parser and reassembler are automatically created from the description of a
given protocol.

• Processing functions, an extensible library of useful functions that allow to
process data packets. The functions are proper to a given protocol or to a
data format. They are supposed to be developed by an expert Java program-
mer, because they may require an extensive knowledge of a protocol, system
calls, and programming conventions (parameter passing, operations allowed
on the PDU context, cf. Section 4).

• Monitors able to detect varying conditions in the environment (network,
gateways, devices, services, hosts, users). In some cases it is important that
an active application reacts to the change of the system state. A monitor
can signal an active application by sending an event that can be tested in
the script program.

• A matching engine that allows to dynamically install and uninstall packet
filters responsible for intercepting packets and passing them to active ap-
plications. An active application can decide when to install or uninstall a
packet filter so that when intercepting packets is not needed, there is no
overhead of passing packets to the user space. Packets that do not match
any filter are forwarded in the standard way.

Active applications can be loaded or unloaded dynamically into the active
gateway. Some active applications that we call proactive cooperate with monitors
and are able to dynamically react and adapt to varying conditions.

3 GateScript Language

GateScript is a scripting language for programming active applications that pro-
cess packets in GAG gateways. Below we review the main constructs of the
GateScript language (see Appendix for more formal description).

6 Hoa-Binh Nguyen, Andrzej Duda

3.1 Statements

A GateScript program is composed of statements. Each statement can test the
values of variables representing specific PDU fields and invoke appropriate func-
tions. User defined variables can be declared and initialized using the set state-
ment and substitute to their values when preceded by $. There are several types
of statements:

– assignment statement to assign a value to a variable, e.g.

set State $AckState;

– conditional statement to execute one of two groups of statements based on
the test of a condition, e.g.

if ($ip.destination_address = $Client) then

WriteToCache;

endif

– function call to invoke a function with some arguments, e.g.

CheckIfExistPacket $tcp.Ack_Number

– event statement to wait for a condition related to an event and to execute a
statement when the event is received, e.g.

onEvent $EventName = "ClientDisconnects" then

PacketFilter "add $ClientIPAddress";

endEvent

When a monitor signals event ClientDisconnects, the application executes
function PacketFilter to install a packet filter for intercepting packets con-
taining the IP address of the client. In this way, the active application starts
receiving packets on behalf of the client, which can be for instance stored in
a cache for later delivery.

3.2 Variables

There are three kinds of variables:

– user defined variables that are not related to any protocol, e.g. variable
$State given in the example above.

– protocol-related variables that represent PDU fields or data content values,
e.g. variable $tcp.SYN representing the SYN TCP flag. The PDU parser
assigns values recognized in a packet to such variables each time a new
packet arrives in the gateway and is passed to the active application.

– monitor variables that represent the state of some environment conditions,
e.g. variable $Disconnected becomes true if a client host probed by a moni-
tor cannot be reached (we assume that we use a monitor able to detect such
a condition).

GateScript 7

In GateScript PDUs arriving in an active application are decomposed into
protocol variables that can be processed in script statements. After processing
packets are completely reconstructed from the variables on the way out.

Variables can be combined by using operators to form expressions. Function
calls in expressions are separated from operators with square brackets.

3.3 Events

When a monitor detects a modification in the state of the environment, it signals
an application with an event. An event has a name and a list of variables. Con-
sider the following example: an application subscribes to a congestion monitor
that detects congestion conditions in the network and passes some information
about the available resources:

onEvent $EventName = "Congestion" then

AdaptEncoding $AvailableBandwidth;

endEvent

The monitor signals the Congestion event and makes the current value of the
available bandwidth accessible. Upon this event, the monitor invokes a function
to adapt encoding.

3.4 Static Attribute

Statements may be static or not. A static statement is executed only once per
execution of a script, whereas a non static statement is executed each time a
packet is received and parsed. Such an execution semantics is needed when we
want to initialize some variables or start monitors. It allows keeping a limited
state during the execution of a script. Any statement can be static. As packet
processing is the main goal of active applications, statements are not static by
default. Consider the following example:

if ($tcp.SYN = 1) then

static set Client $ip.destination_address;

set State $SynState;

endif

If the active application receives a SYN TCP segment, it stores the IP desti-
nation address in the variable $Client and the current state of the connection
in the variable $State. The first assignment will be executed only once, while
the second one, every received SYN segment.

We can characterize GateScript as an active platform supporting limited
statefull packet processing—limited by the script language itself, because the
static attribute only allows initializing some variables of a script. However, if
required, it is extendable by functions such as WriteToCache.

8 Hoa-Binh Nguyen, Andrzej Duda

3.5 Examples

The following three examples concern pervasive environments in which com-
puter devices connected via different types of networks provide the user with
some augmented functionalities. Due to energy or capacity limitations pervasive
environments and mobile components usually require some additional processing
to be done in the fixed network infrastructure by a proxy node or a gateway.

The GateScript program presented below corresponds to TCP snooping [2].
It operates in a gateway located between the wired and the wireless parts of
the network. It caches TCP packets in order to respond more quickly to ACK
packets from a mobile client.

static set State 0;

static set SynState 1;

static set AckState 2;

static set EtablishedState 3;

if ($tcp.SYN = 1) then

static set Client $ip.destination_address;

set State $SynState;

endif

if ($tcp.SYN = 1) and ($tcp.ACK = 1) and

($State = $SynState) then

set State $AckState;

ForwardPacket;

return;

endif

if ($State = $AckState) and ($tcp.ACK = 1) then

set State $EtablishedState;

ForwardPacket;

return;

endif

if ($State = $EtablishedState) then

if ($ip.destination_address = $Client) then

WriteToCache;

endif

if ($ip.source_address = $Client) then

if ([CheckIfExistPacket $tcp.ack_number]) then

ForwardFromCacheToClient $tcp.ack_number;

return;

endif

endif

endif

ForwardPacket;

The script performs TCP snooping for one TCP connection with a given
client host. At the beginning, it defines four variables to represent the state of a
TCP connection: $State, $SynState, $AckState, and $EtablishedState. For
each segment during the three-way handshake, the state is modified. When the
connection is established, the active application caches all the packets going to

GateScript 9

the given client host and forwards them to the destination. When it detects by
means of the TCP ACK that the next not yet acknowledged segment resides in
the cache, it forwards it directly to the client (the TCP ACK number corresponds
to the next not yet received segment), and the ACK segment is dropped. In this
way, the client quickly obtains a retransmitted segment from the gateway instead
from the source.

The next example presents a caching service for a mobile host. It subscribes to
a $PresenceMonitor that checks for the presence of a client host by periodically
sending ICMP Echo Request. The state of the client host is represented in the
variable $Disconnected updated by the monitor. When the state changes, an
event is sent to the active application: ClientDisconnects or ClientConnects.
Based on these events, the application enables or disables packet intercepting in
the kernel. At the beginning, when the client host is connected, the application
is running and packets go through the gateway without processing. When the
monitor detects the disconnection of the client host, it signals the application
that installs a packet filter for the IP address of the client. In this way, the
application starts receiving packets. Each packet is stored in a cache. When the
client host connects again, packets are forwarded to the host and the packet filter
is deleted so that packets are no longer processed by the active application.

static set Client "client.host.edu";

static PresenceMonitor $Client;

onEvent $EventName = "ClientDisconnects" then

PacketFilter "add $Client";

endEvent

onEvent $EventName = "ClientConnects" then

PacketFilter "delete $Client";

endEvent

if $Disconnected then

WriteToCache;

else

ForwardCacheToClient;

endif

The following example shows an active application that detects high temper-
ature and generates a fire alarm. First, it calibrates a raw measurement from a
temperature sensor, then it tests to detect whether it is higher than a prede-
fined threshold, and generates an event handled by applications that subscribed
to it. If the temperature is low, the packet is dropped. We assume a simple
packet structure with two fields: the sensor id and the raw measurement of the
temperature.

static set FireAlarmThreshold 50;

set Temperature [Calibrate $RawMesurement];

if $Temperature > $FireAlarmThreshold then

GenerateEvent "FireAlarm" [GetLocalization $SensorID];

else

DropPacket;

endif

10 Hoa-Binh Nguyen, Andrzej Duda

The last examples illustrate a HTTP gateway developed using GateScript—it
scans the HTTP traffic on behalf of a user and performs customization (filtering
out ad banners, reducing image size, etc.). Table 1 lists the functions developed
to process HTTP typed objects.

Table1. Processing functions for HTTP.

Name Functionality

RemoveTag Remove a tag

RemoveColor Remove color information

ContentDiscard Discard the data

ReduceImageSize Reduce image size

ColorToGreyScale Transcode to grey scale

ColorToBW Transcode to black and white

JPEGToGIF Transcode JPEG to GIF

GIFToJPEG Transcode GIF to JPEG

BreakPage Break page

FilterHtmlFrame Filter out a frame

FilterHtmlTable Filter out a table

The examples below deal with the content of Web pages. The first one filters
images by removing all image tags from an HTML page and by discarding all
image objects (RemoveTag function makes use of a HTML parser on a HTTP
object of type text/html).

if $http.content_type contains "text/html" then

RemoveTag "img";

endif

if $http.content_type contains "image" then

ContentDiscard;

endif

The next example reduces the size of JPEG images by half if the original image
is greater than 1 Kbyte.

if (($http.content_type = "image/gif") or

($http.content_type = "image/jpeg")) and

($http.content_length > 1000) then

ReduceImage 0.5;

endif

4 Implementation of GAG and GateScript

4.1 GAG Prototype on Linux

We have implemented GAG on Linux (its first version was called ProAN [17]).
Linux is a good candidate for such an active node because of its properties: packet

GateScript 11

forwarding support, loadable kernel modules, and the ease of modifying the ker-
nel behavior. The forwarding part of our architecture with the matching engine
is implemented in the Linux kernel. Each active application is implemented as
a user space process and may receive packets belonging to a flow defined by
some packet properties such as source or destination address. An active applica-
tion may dynamically install and uninstall packet filters in the matching engine.
When installed, a packet filter passes matching packets to the application.

The matching engine uses Netfilter [16], the support for custom processing
of packets in the kernel. It allows users to hook extended modules in the packet
forwarding path and to pass packets of a flow to a process in the user space
for further processing. After processing packets are re-injected into the kernel,
however the process cannot inject newly created packets into kernel so that some
processing such as packet duplication is impossible with standard Netfilter.

Another limitation of Netfilter is that only one process in the user space may
receive packets from the kernel. IP Queue Multiplex Daemon (ipqmpd) [11] adds
the possibility of passing packets from different flows to different user processes.
It communicates with user processes using sockets or other IPC mechanisms.
This is inefficient, because packets must re-enter the kernel before arriving in
the destination user process.

To obtain better performance of GAG, we have modified Netfilter to pass dif-
ferent packet flows directly to the right user process without going through the
multiplexer daemon. We use iptable to mark packets with the corresponding
process ID (PID) of the active application. When the ip queue module receives
the packets, it detects and forwards them directly to the right process. We have
also modified the ip queue module to support more than three modes of oper-
ation (drop a packet, pass the kernel metadata of a packet to the user process,
pass the metadata and the packet payload to the user process)—the standard
ip queue module always keeps a copy of a packet passed to a user space process.
A module can only modify the payload of packets and it is not possible for a
module to inject newly created packets into the kernel. With our modification,
when a packet is passed to a user space process in this mode, it uses a new
verdict value (NF INJECT) to inject a new packet into the kernel. Our version of
the modified ip queue currently supports 40 queues in the ip queue module.

4.2 GateScript Implementation

We have implemented GateScript in Java. A user space process implementing
each active application contains the GateScript engine as well as PDU parsers
and reassembler. A script program is compiled into an intermediate form in-
terpreted by the GateScript engine. The compilation is done only once per each
application activation. Protocol variables exist in the intermediate form, however
their values become assigned when a packet arrives in the application.

Internally, GateScript makes use of a structure containing the set of variables
corresponding to a PDU: the PDU context. It is a hashed table with all protocol-
related variables obtained from the parsing of a PDU. When a protocol parser
receives a PDU, it parses it and creates a PDU context. The GateScript engine

12 Hoa-Binh Nguyen, Andrzej Duda

uses it when executing a program script and passes it to any invoked function,
which can change the variable values or may add more variables if necessary
(when developing functions, the programmer needs to carefully handle the PDU
context).

We use Flavor [6] to describe the structure of bitstream oriented protocols
such as IP, TCP, UDP, RTP, or X Window. The PDU description in Flavor
is compiled to generate a C++ or a Java class, integrated with the GateScript
engine to parse a bitstream, recognize the defined fields, and obtain their values.
Table 2 presents the description of an IP packet containing a TCP segment in
Flavor.

For text oriented protocols such as HTTP, FTP, SMTP, SNMP, RTSP, or
SIP we generate parsers using JavaCC [12]. We describe a given protocol in a
syntax description file proper to JavaCC. Table 3 presents the description of
the HTTP protocol. It defines the structure of the HTTP PDUs and couples
the parser and reassembler with the GateScript engine by means of the PDU
context. The header attributes become available for scripts in variables whose
names are HTTP attributes (because of compatibility problems with Java, we
replace dash with underscore, for example, the Content-Type header attribute
is represented by the $http.content type variable).

5 Evaluation

We have experimented with GateScript by implementing active applications en-
hancing the behavior of several protocols: an active gateway for HTTP that
scans the HTTP traffic on behalf of a user and performs customization (filtering
out ad banners, reducing image size), a multiplexer of the X Window protocol
able to replicate a window of a remote application on different X displays, a
SIP gateway that performs user defined actions on SIP INVITE messages, an
MPEG adaptation gateway that monitors the RTCP reports to detect degrad-
ing reception conditions and transcode MPEG to H.263, and a snooping wireless
adaptation gateway that acts at the IP and TCP layers in a 802.11 WLAN cell
to provide statistical QoS by limiting the rate of TCP flows through modification
of the announced window size.

Although the best performance was not our primary goal, we wanted to
obtain a first evaluation to see if the overhead of GateScript is not too prohibitive
compared to standard gateways. Therefore we separated GateScript from GAG
and evaluated them independently. We have measured the performance of a
HTTP gateway programmed using GateScript on a 1.06 GHz Pentium III PC
with 248 MB RAM running Windows XP and compared with the performance of
Muffin [15], a public Java HTTP proxy. In this experiment, our gateway operated
as a proxy without the packet matching kernel: all packets go through a user
process running GateScript engine. Both tested tools are entirely developed in
Java and executed with Java 2 SDK 1.4.1.

In the test, we have downloaded pages from a popular Web server through
the gateways that processed HTTP Replies: each page has been analyzed and

GateScript 13

Table2. TCP/IP PDU described in Flavor.

class TCP_IP {

unsigned int(4) ip.version;

unsigned int(4) ip.hdr_length;

unsigned int(8) ip.service_type;

unsigned int(16) ip.total_length;

unsigned int(16) ip.identification;

unsigned int(3) ip.flags;

unsigned int(13) ip.fragment_offset;

unsigned int(8) ip.ttl;

unsigned int(8) ip.protocol;

unsigned int(16) ip.header_checksum;

unsigned int(32) ip.source_address;

unsigned int(32) ip.destination_address;

if (ip.hdr_length>5)

{ unsigned int(8) ip.options[(ip.hdr_length*4-20)]; }

unsigned int(16) tcp.source_port;

unsigned int(16) tcp.destination_port;

unsigned int(32) tcp.sequence_number;

unsigned int(32) tcp.ack_number;

unsigned int(4) tcp.data_offset;

unsigned int(6) tcp.reserved;

unsigned int(1) tcp.URG;

unsigned int(1) tcp.ACK;

unsigned int(1) tcp.PSH;

unsigned int(1) tcp.RST;

unsigned int(1) tcp.SYN;

unsigned int(1) tcp.FIN;

unsigned int(16) tcp.window;

unsigned int(16) tcp.TCP_Checksum;

unsigned int(16) tcp.urgent_pointer;

if (tcp.data_offset>5)

{ unsigned int(8) tcp.options[(tcp.data_offset-5)*4]; }

unsigned int(8) tcp.data[ip.total_length-(ip.hdr_length*4)

-(tcp.data_offset*4)]; };

14 Hoa-Binh Nguyen, Andrzej Duda

Table3. HTTP PDU described in JavaCC.

options

{ USER_CHAR_STREAM = true; }

PARSER_BEGIN (HTTPResponseParser)

public class HTTPResponseParser

{ public Map PDUcontext; }

PARSER_END (HTTPResponseParser)

void HTTPParse(): {}

{{ PDUcontext = new HashMap(); }

Status_Line() <CRLF>

(Header() <CRLF>)*

<CRLF>

Message_Body()

}

void Status_Line() :

{ String version,reason_phrase;

int status_code; }

{ version = string() <SPACE>

{ PDUcontext.put("version",version); }

status_code = number() <SPACE>

{ PDUcontext.put("status_code",

new Integer(status_code)); }

reason_phrase = String();

{ PDUcontext.put("reason_phrase", reason_phrase); }}

void Header():

{ String header,value; }

{ header = string() ":" value = string()

{ header = header.replace(’-’,’_’);

PDUcontext.put(header,value); }}

void Message_Body():

{ byte[] data; }

{ data = byte_array()

{ PDUcontext.put("content",data); }}

GateScript 15

all images have been filtered out. Figure 2 compares the download delay for the
GateScript gateway and Muffin in function of different page sizes. We can see
that the overall performance in terms of delay remains comparable.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20 25 30 35 40 45

D
el

ay
 (

m
s)

Data length (kB)

GateScript
Muffin

Muffin linear fit
GateScript linear fit

Fig. 2. Performance of Gatescript vs. Muffin, image elimination

To evaluate the GAG implementation on Linux, we have measured the per-
formance of packet forwarding and passing them to the user space on a 800 MHz
Pentium III PC with 128 MB RAM running Red Hat 7.2. Figure 3 presents the
delay of packet forwarding in function of the packet size for two cases: in the
first one, packets enters the kernel and they are just forwarded to the destination
(no active application installed); in the second case, a packet filter is installed
to intercept packets and pass them to an active application (active flow - ac-
tive application installed). It does not perform any processing and just re-injects
packets into the kernel for further forwarding. The difference between the two
curves represents the overhead of passing a packet to the user space. These re-
sults show that when an active application does not install a packet filter, data
flows do not incur any performance penalty. We can also see from the figure that
in the second case the overhead has only impact on data flows on which active
applications need to perform useful processing: the delay for a passive flow (the
flow for which packets are not intercepted by its packet filter) stays small even if
the packets of an active flow are processed by the associated active application.

16 Hoa-Binh Nguyen, Andrzej Duda

0 200 400 600 800 1000 1200 1400 1600
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

Kernel forwarding delay Linux 2.4.16

K
e
rn

e
l D

e
la

y
[µ

s]

Packet Size [bytes]

 active flow - active application installed
 passive flow - active application installed
 no active application installed

Fig. 3. Performance of passing packets to the user space

5.1 Limitations of the Prototype

At the moment only one script can access a packet. We have not dealt with mul-
tiple scripts processing the same packet yet—this requires solving the problem
of the processing order, defining allowed operations on the packet, and eventual
communication between scripts.

We currently use only one protocol parser per script. It is fairly easy to
increase their number if they are of the same nature, e.g. two bit-oriented or two
text-oriented protocols. However, coupling Flavor parsers with those generated
by JavaCC is more difficult and needs more work.

At the current stage, GateScript does not automatically handle a PDU split
over multiple packets, e.g. a HTTP Reply containing a large image. If really
needed, it can be done by programming a function that keep state between two
packet arrivals: it can store packets with fragments, reorder them if needed, and
finally process the whole PDU.

6 Related Work

Research in active networking has brought in several platforms supporting active
applications and services. Many of them use full-fledged programming languages
such as Java ([8,18]), C ([5,21]), or TCL [1]. However, as said previously, we think

GateScript 17

that a specialized scripting language with automatic parsing of PDU fields like
GateScript provides a more flexible tool for programming active gateways. As to
Java, we consider it as an excellent language for developing GateScript internal
functions, but we do not need all its complexity to program active applications,
in which for example, the programmer would have to deal with exceptions and
all Java keywords.

There are several other specialized languages for active networking platforms.
PLAN [10] and GateScript have different objectives: PLAN is a language for
programming active packets while GateScript is used for programming active
applications that process regular (passive) packets in a transparent way.

Netscript [23] is a connector-oriented language for composing active appli-
cations from smaller components called Netscript boxes. The main difference
between Netscript and GateScript is that Netscript is suitable for composing ex-
tensible routers with dynamic protocol stacks, while GateScript is mainly used
to customize a flow at a given protocol layer without cumbersome interpretation
of the incoming data and encoding the outgoing data.

Unlike several existing platforms that require developing kernel modules or
plugins [13,14], we place custom processing in the user space. Other platforms
such as ALAN [8] or AS1 [1] have adopted a similar goal, but they provide
support for active services working mostly at the application layer. The Gate-
Script support for packet processing in the user space does not limit the scope
of programmability to application layer protocols—it can deal with packets of
any layer ranging from network to application.

Adaptation proxies have been extensively studied in the context of HTTP
and content distribution. CacheL is a language that enables creating customiz-
able caching policies based on different cache events and a set of predefined
actions [3]. The Open Pluggable Edge Services (OPES) [20] IETF working group
is defining an architecture that allows services to operate on application data
when they transit across an intermediate node (a proxy or a surrogate server).
In some sense, OPES devices (intermediaries supporting the OPES architec-
ture) are programmable by means of a rule language that may depend on some
protocol properties such as HTTP headers.

Several content adaptation proxies have been developed for image or video
transcoding for wireless clients [1,7,9,4,22]. However, most of them are fixed in
the sense that their functionalities cannot be dynamically extended nor custom-
ized—they are only configurable, but not programmable.

The programmable video gateway [19] uses a scripting language to program a
video gateway. The focus here is on the video data only and not on the protocol
data structures. By integrating a parser of a given protocol, GateScript can deal
with data packets not only at the application layer.

18 Hoa-Binh Nguyen, Andrzej Duda

7 Conclusion

In this paper, we have presented GAG, a generic active gateway that supports
GateScript, a scripting language for easy programming of custom processing on
data packets. Unlike other active networking platforms it is

– generic and easy to use: we automatically create a PDU parser and reassem-
bler for the protocol that needs to be enhanced with custom processing, and
provide useful functions to operate on the content of PDUs; in this way,
the programmer may focus on PDU processing and not on cumbersome and
error prone interpretation of incoming data packets.

– reactive: in addition to custom processing of packets, active applications are
able to react to the state of the environment: they can receive events from
monitors and test variables reflecting the state of the environment;

– flexible: GateScript allows processing at different protocol layers ranging from
network to application levels.

GateScript makes the development of active applications fairly easy within
the grasp of a user not familiar with expert network programming. Our ex-
amples show that even complex problems such as snooping TCP can be easily
programmed in GateScript.

GateScript can be especially useful for creating personal communication gate-
ways on mobile computers. In this case, we place the active gateway on a mobile
host so that standard applications may benefit from network customization of
flows entering the host. The user can easily specify the behavior of the gateway
by injecting scripts into the GateScript engine. In this way, we can handle con-
figuration modifications while the host changes the point of attachment to the
global network. We plan to experiment with GateScript to develop such personal
communication gateways.

We also need to get more insight into the performance of our prototype and
its ability to handle an increasing number of flows, packet filters, and active
applications.

8 Acknowledgments

This work has been partially supported by France Telecom R&D.

Appendix

GateScriptProgram = Statements

Statements = ([static] Statement ‘‘;’’)*

Statement = AssignStatement

| IfStatement

| FunctionStatement

GateScript 19

AssignStatement = "set" Variable Expression

IfStatement = ‘‘if’’ Expression ‘‘then’’

Statements [ElseStatement] ‘‘endif’’

ElseStatement = ‘‘else’’ Statements

OnEventStatement =‘‘onEvent’’ Expression ‘‘then’’

Statements ‘‘endEvent’’

FunctionStatement = FunctionName (Expression)*

Expression = ConstantValue

| ‘‘$‘‘Variable

| Expression BinOp Expression

| UnOp Expression

| ‘‘[‘‘ FunctionStatement ‘‘]‘‘

| ‘‘(‘‘ Expression ‘‘)’’

Variable = Identifier

FunctionName = Identifier

Identifier = Letter (Letter | Digit)*

ConstantValue = Boolean | String | Integer |

Real | Character

BinOp = ‘‘+’’ | ‘‘-’’ | ‘‘*’’ | ‘‘/’’

| ‘‘<’’ | ‘‘<=’’ | ‘‘=’’ | ‘‘!=’’

| ‘‘>’’ | ‘‘>=’’

| ‘‘and’’ | ‘‘or’’ | ‘‘contains’’

UnOp = ‘‘-’’ | ‘‘+’’ | ‘‘!’’

Boolean = ‘‘true’’ | ‘‘false’’

String = ‘‘"’’ (~[‘‘"’’,‘‘\‘‘,‘‘\n‘‘,

‘‘\r‘‘,"[","]"])* ‘‘"’’

Integer = Digit (Digit)*

Real = Integer [Fraction] [Exponent]

Fraction = ‘‘.’’ Integer

Exponent = (‘‘e’’ | ‘‘E’’) [‘‘+’’ | ‘‘-’’]

Integer

Digit = ["0"-"9"]

Letter = ["a"-"z", "A"-"Z"] | "_"

References

1. E. Amir, S. McCanne, and R. Katz. An Active Service Framework and its Ap-
plication to Real-time Multimedia Transcoding. ACM Communication Review,
28(4):178–189, Sep. 1998.

2. H. Balakrishnan, S. Seshan, and R. H. Katz. Improving Reliable Transport and
Handoff Performance in Cellular Wireless Networks. ACM Wireless Networks,
1(4), December 1995.

3. J. F. Barnes and R. Pandey. CacheL: Language Support for Customizable Caching
Policies. In the 4th International Web Caching Workshop, San Diego, California,
1999.

4. S. Chandra, C.S. Ellis, and A. Vahdat. Multimedia Web Services for Mobile Clients
Using Quality Aware Transcoding. In the 2nd ACM International Workshop on
Wireless and Mobile Multimedia (WoWMoM’99), Seattle, Washington, USA, Au-
gust 1999.

20 Hoa-Binh Nguyen, Andrzej Duda

5. D. Decasper, Z. Dittia, G. Parulkar, and B. Plattner. Router Plugins: A Software
Architecture for Next Generation Routers. IEEE/ACM Transaction on Network-
ing, Feb. 2000.

6. A. Eleftheriadis and D. Hong. Flavor: A Language for Media Representation. In the
Fifth ACM International Conference on Multimedia, Seattle, Washington, 1997.

7. A. Fox and E.A. Brewer. Reducing WWW Latency and Bandwidth Require-
ments by Real-Time Distillation. In the 5th International WWW Conference,
Paris, France, May 1996.

8. M. Fry and A. Ghosh. Application Level Active Networking. Computer Networks,
1999.

9. R. Han et al. Dynamic Adaptation in an Image Transcoding Proxy for Mobile
Web Browsing . IEEE Personal Communications Magazine, 5(6):8–17, December
1998.

10. M. Hicks et al. PLAN: A Programming Language for Active Networks. In Proc.
ICFP ’98, 1998.

11. ipqmpd - IP Queue Multiplex Daemon. http://gnumonks.org/projects/.
12. Java Compiler Compiler (JavaCC) - The Java Parser Generator.

http://www.webgain.com/products/java cc/.
13. R. Keller, L. Ruf, A. Guindehi, and B. Plattner. PromethOS: A Dynamically Ex-

tensible Router Architecture Supporting Explicit Routing. In IWAN02 - Fourth
Annual International Working Conference on Active Networks, Zurich, Switzer-
land, December 4-6, 2002.

14. A. Kind, R. Pletka, and M. Waldvogel. The Role of Network Processors in Active
Networks. In IWAN03 - Fourth Annual International Working Conference on
Active Networks, Kyoto, Japan, Dec. 2003.

15. Muffin - a World Wide Web Filtering System. http://muffin.doit.org/.
16. The netfilter/iptables project. http://netfilter.samba.org .
17. H-B. Nguyen and A. Duda. ProAN: an Active Node for Proactive Services in

Pervasive Environments. In The 2nd International Workshop on Active Network
Technologies and Applications (ANTA 2003), Osaka, Japan, May 2003.

18. E. Nygren, S. Garland, and M. F. Kaashoek. PAN: A High-Performance Active
Network Node Supporting Multiple Mobile Code Systems. In The Second IEEE
Conference on Open Architectures and Network Programming-OpenArch99, New
York, New York, March 1999.

19. W. T. Ooi, R. Renesse, and B. Smith. Design and Implementation of Programmable
Media Gateways. In the 10th International Workshop on Network and Operating
System Support for Digital Audio and Video, Chapel Hill, North Carolina, June
2000.

20. The Open Pluggable Edge Service (OPES). http://www.ietf-opes.org .
21. S. Schmid, T. Chart, M Sifalakis, and A. C. Scott. Flexible, Dynamic and Scalable

Service Composition for Active Routers. In IWAN02 - Fourth Annual International
Working Conference on Active Networks, Zurich, Switzerland, December 4-6, 2002.

22. J. Seitz, N. Davies, M. Ebner, and A. Friday. A CORBA-based Proxy Architec-
ture for Mobile Multimedia Applications. In MMNS’98 - 2nd IFIP/IEEE Interna-
tional Conference on Management of Multimedia Networks and Services, Versailles,
France, November 1998.

23. Y. Yemini and S. Silva. Towards Programmable Networks. In IFIP/IEEE Interna-
tional Workshop on Distributed Systems: Operations and Management, L’Aquila,
Italy, October 1996.

