
Tickless Contiki 
Efficient timekeeping for low-power 

sensor nodes
Franck Rousseau 

Université Grenoble Alpes – LIG

Workshop Grenoble–WSN — ST Crolles 
07/04/2014



The problem
• Low-power, scarce energy 

• Must sleep most of the time 

• Distributed system 

• Time is not a local internal reference 

• Need for precise synchronization with neighbors 

• DSME beacons, GTS/ TSCH slots 

• High resolution timers 

• Software MAC implementation

2



Traditional approach
• Periodic interrupt, software clock counting ticks : Hz (polling !) 

• Every 1/Hz seconds, increment absolute clock value ⇒ waste of energy 

• Local clock in every node 

• Neighbors drift appart 

• Resolution for timers 

• Hz = 100 means a resolution of 0.01 seconds (Linux jiffies) 

• Cannot sleep less and be more precise than 10 ms 

• Waking up more often ⇒ waste even more energy

3



Rounding issues
• Problem with timer resolution 

• Periods that are not integer numbers of clock tick 

• 32 kHz, 31.25 µs resolution clock 

• How to wait for 40 symbols (2.4 GHz radio) ? 

• 640 µs = 20.48 ticks ! 

• Need for high resolution timers

4



Timers in Contiki
• clock : system time 

• timer, stimer : needs polling 

• ctimer, etimer : callbacks and events 

• for protocols and applications 

• rtimer : real-time, architecture specific timers 

• preempt any running process 

• Naive and inefficient implementation 

• Polling, O(n) list search, …

5



Precision
• TMoteSky 

• 16 bit counter with Hz = 128 

• 65536 / 128 = 512 wrap around every ~8’30” 

• Longest Beacon Interval 

• 960 x 214 x 16.10-6 ~ 251 s ~ 4 min 11 s 

• 251 x 128 - 1 = 32127 useless interrupts between 
two beacons !

6



What do we need ?
• Efficient implementation, less running code ⇒ energy savings 

• Long sleep periods, tickless timekeeping ⇒ energy savings 

• High resolution timers 

• Software MAC implementation: order of symbol ~ 16 µs 

• Precise synchronization with neighbors 

• Clock calibration / drift compensation 

• Smaller wake-up margins ⇒ energy savings

7



Modern timekeeping
• Tickless or dynamic ticks for a long time in GPOSes (Linux, 

BSD, …) 

• Prevent waking up idle CPUs and/or cores 

• Reduce load in virtualized environments 

• HiRes timers : timeouts vs. timers 

• High performance NICs, multimedia 

• Deferrable timers / Timer coalescing 

• Group non critical work in batches

8



Tickless for sensor nodes
• Some RTOSes for embedded systems support tickless 

• FreeRTOS, RIOT OS, FireKernel, … 

• In Contiki 

• Implemented for one target (not found yet) 

• Close enough in the current ST GreenNet implementation 

• Should be architecture dependent code 

• Factor out this code in the core Contiki

9



Requirements (i)
• Support for multiple clock sources 

• Several HW sources 

• HiRes and LowRes 

• Handle wrap around transparently 

• 16 bit architectures

10



Requirements (ii)

• Multiple virtual clocks 

• Clock calibration 

• Tracking several neighbors 

• DSME 

• TSCH 

• Wake on Idle

C2
C1

N1

C3

N2

11



Clock drift

0

100

200

300

400

500

600

0 100 200 300 400 500

E
r
r
o
r

(
c
l
o
c
k

t
i
c
k
s
)

Sample

W/o compensation

W compensation

eZ430, 12 kHz VLO 12



Efficiency of drift compensation

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100

0

100

200

300

400

500

F
r
e
q
u
e
n
c
y

C
u
m

u
l
a
t
i
v
e

f
r
e
q
u
e
n
c
y

Error (clock ticks)

0

10

20

30

40

50

60

0 100 200 300 400 500

0

100

200

300

400

500

F
r
e
q
u
e
n
c
y

C
u
m

u
l
a
t
i
v
e

f
r
e
q
u
e
n
c
y

Error (clock ticks)

Frequency

CDF

13



Requirements (iii)

• Timer correction 

• Rounding issues 

• Keep compatibility with existing API 

• Wake up tasks just before polling

14



Pending issues

• Efficient data structures and algorithms 

• Generic transparent calibration possible ? 

• No need to worry in user code

15



Tentative architecture

Clock/timer sources Src1 Src2

Calibration process

VClock1 VClock2 VClock3Virtual clocks

ExtSrc: Parent Beacon

Timers

Applications

Protocols

Timer: BeaconTimer

Calibration

802.15.4 beacon-enabled


