WalT: testing sensor networks and distributed environments

E. Dublé, F. Rousseau, J. Baranguán, J. Zeni, I. Juc,

P.-H. Frohring, B. Faure

April 7, 2014 LIG / DRAKKAR

The problem

Contents

The problem

2 The WalT project

3 WalT: how it works

Demos

- How to efficiently debug a distributed system?
- Sensor networks: even harder (constrained devices)

The problem

WSNs: existing solutions

- Senslab IoT-Lab, other public platforms:
 - Pros: many nodes, readily available
 - Cons: remote access, not very flexible (e.g. you cannot replace a sensor)
- "Hand-made" one-time experiment:
 - Pros: on your own desk, very flexible, local setup
 - Cons: time-consuming setup, not conceivable for many nodes

Contents

The problem

2 The WalT project

3 WalT: how it works

a Demos

The WalT approach

- WalT: Wireless Testbed
- Intermediary approach:
 - Local in your lab or company
 - Open source testbed management software
 - Open documentation and hardware recommendations
- You buy the (cheap) infrastructure, the project provides the rest of the stack

WalT nodes and network

- Walt nodes are built on a cheap (around 35€) Single-Board-Computer called Raspberry Pi¹
- Walt nodes boot an OS stored on the LAN. Depending on the use case, it may be:
 - Your choice of Linux distribution
 - Android (if you simulate a network of smartphones)
- Walt nodes are linked together using a Power-Over-Ethernet network

¹We may evolve to another platform in the future if needed / valuable.

WalT scenarios

Sensor networks:

connect 1 or more sensors to each RPi node

- The RPi is used as a gateway to communicate with the sensor and control it (flash, reboot)
- Useful to test WSN protocols
- **Distributed systems**: use the RPi nodes themselves
 - Useful to test data management systems, TCP congestion avoidance optimizations, etc.

- AGIR (UJF/INP) 2013/2014: Hardware, trainees
- ST: Sensors, industrial contract (up to end 2013)

Contents

The problem

2 The WalT project

Demos

WalT: testing sensor networks and distributed environments

 $\langle \rangle$

Collecting sensor traces...

Collecting sensor traces...

trace from sensor X : sending <packet>

Collecting sensor traces...

Collecting sensor traces...

trace from sensor Y : received <packet> trace from sensor Z : received <packet>

...and then:

- The traces are analysed by the server (e.g. "which sensors received this packet?")
- The traces are then directed to the VizWalT GUI

- A modified simulator: cooja
 - VizWalT reuses cooja's interface
- But:
 - In an unmodified cooja : each node is smart
 - In VizWalt : each node reflects the behaviour of a real sensor

Technical challenges

- Sensors send traces through their **serial link**, which is slow (slower than the radio!)
 - It may disturb the behavior of the sensor.
 - Solutions being implemented:
 - Send only one small part of the packet (enough to identify it).
 - Improve the serial link driver (use DMA).
- Synchronization issues (being explored)
- **Cooja-related** issues (real-nodes versus emulated-nodes paradigm)

Demos

- The problem
- **2** The WalT project
- **3** WalT: how it works

WalT: testing sensor networks and distributed environments

- Preliminary version of a WalT tesbed management tool
- Sample WalT session with DSME nodes

Questions?

WalT: testing sensor networks and distributed environments