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Abstract—In this paper, we propose stochastic fingerprints
for application traffic flows conveyed in Secure Socket
Layer/Transport Layer Security (SSL/TLS) sessions. The fin-
gerprints are based on first-order homogeneous Markov chains
for which we identify the parameters from observed training
application traces. As the fingerprint parameters of chosen
applications considerably differ, the method results in a very good
accuracy of application discrimination and provides a possibility
of detecting abnormal SSL/TLS sessions. Our analysis of the
results reveals that obtaining application discrimination mainly
comes from incorrect implementation practice, the misuse of
the SSL/TLS protocol, various server configurations, and the
application nature.

I. INTRODUCTION

The importance of appropriate traffic classification methods
continues to grow. They are essential for effective network
planning, policy-based traffic management, application priori-
tization, and security control. However, traditional port-based
[1] and payload-based [2], [3] classification methods become
less effective, because new applications can hide their nature
by dynamically assigning ports, by using tunneling, or by ap-
plying proprietary payload encryption methods. This situation
has led to the development of new identification methods based
on flow features [4], [5] and host behavior [6], [7]. They are
useful for classification of application layer protocols (e.g.
HTTP, DNS, BitTorrent, etc.) or traffic categories (e.g. P2P
content sharing, games, multimedia, WWW, etc.). However,
they are less effective for reliable identification of application
flows on top of a given protocol. Moreover, apart from some
notable exceptions, these methods are not appropriate for
classifying traffic where only one direction is observed due
to routing asymmetries [8].

The past research on traffic analysis and classification
showed that once we are able to generate a unique signature
based on the packet or message payload (e.g. HTTP request
headers), we can classify applications with high accuracy [3],
[8]. Unfortunately, such approaches fail in case of encrypted
traffic [9]. In this work, we propose a payload-based method
to identify application flows encrypted with the Secure Socket
Layer/Transport Layer Security (SSL/TLS) protocol, which is
a fundamental cryptographic protocol suite supporting secure
communication over the Internet [10].

Our approach consists of taking advantage of the infor-
mation embedded in the SSL/TLS header to create statistical

fingerprints of sessions to classify application traffic. We call
a fingerprint any distinctive feature allowing identification of a
given traffic class. In this work, a fingerprint corresponds to a
first-order homogeneous Markov chain reflecting the dynamics
of an SSL/TLS session. The Markov chain states model a
sequence of SSL/TLS message types appearing in a single
direction flow of a given application from a server to a client.

We have studied the Markov chain fingerprints for twelve
representative applications that make use of SSL/TLS: PayPal
(an electronic service allowing online payments and money
transfers), Twitter (an online social networking and micro-
blogging service), Dropbox (a file hosting service), Gadu-
Gadu (a popular Polish instant messenger), Mozilla (a part
of Mozilla add-ons service responsible for verification of the
software version), MBank and PKO (two popular European
online banking services), Dziekanat (student online service),
Poczta (student online mail service), Amazon S3 (a Simple
Storage Service) and EC2 (an Elastic Compute Cloud), and
Skype (a VoIP service). The resulting models exhibit a specific
structure allowing to classify encrypted application flows by
comparing its message sequences with fingerprints. They can
also serve to reveal intrusions trying to exploit the SSL/TLS
protocol by establishing abnormal communications with a
server.

II. SSL/TLS OVERVIEW

Secure Sockets Layer (SSL) [11] and its successor Transport
Layer Security (TLS) [10] are cryptographic protocols that
provide secure communication between two parties over the
Internet by encapsulating and encrypting application layer
data. Many WWW portals and servers, especially those pro-
viding commercial services, use SSL/TLS for guaranteeing
security of all operations.

Figure 1 illustrates the structure of SSL/TLS and its com-
ponents:

• Record Protocol: compresses and encrypts upper-layer
data using the security parameters configured by the
Handshake Protocol.

• Application Data Protocol: provides application layer
data to the Record Protocol.

• Handshake Protocol: negotiates parameters of an
SSL/TLS session. Two communicating parties agree on
the protocol version to use, they optionally authenticate
each other, exchange information on the session ID, select978-1-4799-3360-0/14/$31.00 c©2014 IEEE



ApplicationkLayer HTTPHTTP TelnetTelnet FTPFTP OtherOther

SSL/TLS
Protocol

TCPTCP

Layer 1

Layer 2

Application
Data

Protocol

Application
Data

Protocol
Change

CipherkSpec

Change
CipherkSpec

IRCIRC

HandshakeHandshake AlertAlert

RecordkProtocolRecordkProtocol

TransportkLayer

HandshakekProtocol

Figure 1. SSL/TLS protocol structure

cryptographic and compression algorithms, as well as the
shared secret used to generate keys.

• Change Cipher Spec Protocol: signals modifications to
encryption strategies. The protocol consists of a single
message sent by either the client or the server to inform
the other party that successive records will use the newly
negotiated cryptographic algorithm and keys.

• Alert Protocol: reports an error condition or a change in
status of the session.
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Figure 2. Message exchange during an SSL/TLS session with a full
handshake

Figure 2 presents an example message exchange between
a client and a server during the SSL/TLS session with a full
handshake.

The initial message exchange of Client Hello and
Server Hello establishes the attributes: Protocol Version,
Session ID, Cipher Suite, and Compression Method. The key
exchange uses up to four messages: server Certificate,
Server Key Exchange, client Certificate, and
Client Key Exchange. Then, the client sends Change
Cipher Spec and the next Finished message is
encrypted with the new algorithms and keys. In response, the

server sends its own Change Cipher Spec message and
the Finished message under the new cipher specification,
which completes the SSL/TLS handshake and the two parties
can exchange application layer data. The server terminates
the session with an Alert message.

The exchange is an example—a session can be shortened
by resuming previous sessions using the Session ID or it can
be significantly modified depending on server configuration
and application requirements. Note that during the SSL/TLS
handshake much information is sent as plaintext. However, af-
ter the Server Hello Done or Change Cipher Spec
protocol message, only the protocol type, the length of a
record, and the SSL/TLS version are not encrypted.

We use below the following compact notation of messages
types: the decimal protocol types and, if not encrypted, the
corresponding message types present in the SSL/TLS headers
(cf. Figure 3). For instance, we represent the Application
Data Protocol as 23: and the Handshake Client
Hello message as 22:1.

In our study, we consider only server-side message types
of an SSL/TLS session. Depending on client configurations
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Figure 3. SSL/TLS protocol types and their corresponding decimal codes

(e.g. SSL/TLS protocol settings of Web browsers), we expect
slightly different characteristics for the client side, whereas the
service-side model should be representative of all networks.
Moreover, the separation of client and server-side models helps
tackling the problem of asymmetric routing when we can only
observe traffic in one direction.

III. MARKOV CHAIN FINGERPRINTS

In this section, we propose an approach based on Markov
chains to model possible sequences of message types observed
in single-directional SSL/TLS sessions. We have chosen a first-
order homogeneous Markov chain model due to its simplicity.

We consider discrete-time random variable Xt for any t =
t0, t1, ..., tn ∈ T . It takes values it ∈ {1, ..., s}, where it is
either an SSL/TLS message type (e.g. 22:2) or a sequence
of the SSL/TLS message types transmitted in a single TCP
segment (e.g. 22:11,22:14).

We assume that Xt is a first-order Markov chain [12]:

P (Xt = it|Xt−1 = it−1, Xt−2 = it−2, . . . , X1 = i1)

= P (Xt = it|Xt−1 = it−1). (1)



We further assume that the Markov chain is homogeneous,
i.e. a state transition from time t−1 to time t is time-invariant:

P (Xt = it|Xt−1 = it−1) = P (Xt = j|Xt−1 = i) = pi−j , (2)

with the transition matrix [12]:

P =


p1−1 p1−2 · · · p1−s

p2−1 p2−2 · · · p2−s

...
...

. . .
...

ps−1 ps−2 · · · ps−s

 , (3)

where:
∑s

j=1 pi−j = 1. We denote by:

Q = [q1, q2, . . . , qs], (4)

the ENter Probability Distribution (ENPD), where qi =
P (Xt = i) at time t0, and we define:

W = [w1, w2, . . . , ws], (5)

as the EXit Probability Distribution (EXPD), where wi repre-
sents the probability that the session finishes when it is in state
i at time tn. Note that both probability distributions are inde-
pendent of the Markov chain—they provide the probabilities to
enter and quit the Markov chain. In traditional Markov chain
models, there is an initial state and one or several absorbing
states. In our case, ENPD defines the probability to enter
one of the state of the Markov chain and EXPD gives the
probability of quitting the Markov chain from any of its states.
Based on these definitions, the probability that a sequence
of states X1, . . . , XT representing a single SSL/TLS session
occurs is as follows:

P ({X1, . . . , XT }) = qi1 ×
T∏

t=2

pit−1−it × wiT . (6)

The resulting probability indicates how a given SSL/TLS
sequence of message types during a session is close to a model
of an application flow: a larger value means that the SSL/TLS
session is closer to the model.

To illustrate the process of the fingerprint creation, consider
the following examples of the message sequences observed
during SSL/TLS sessions in a training dataset composed of
only three server-side SSL/TLS flows of the PayPal application
traffic:

22:2-22:11,22:14-20:,22:-23:
22:2,20:,22:-23:
22:2-22:11,22:14-20:,22:-23:-23:-21:

There are 6 different Markov states in the example. The tran-
sition probability between states is derived from frequencies
observed in the sequences, e.g. P22:2−22:11,22:14 = 1, while
P23:−23: = 0.5. The ENPD vector is composed of two non-
zero elements, namely P22:2 = 0.67 and P22:2,20:,22: = 0.33,
whereas the EXPD vector also contains two non-zero elements
P23: = 0.67 and P21: = 0.33. The probabilities are the
parameters of the Markov chain fingerprint for the PayPal
traffic. Based on the model, we can find the probability that
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Figure 4. Parameters of the fingerprint for PayPal

an observed SSL/TLS session conveys the PayPal application
traffic (cf. Eq. 6). The probability that the following sequence
of SSL/TSL message types:

22:2,20:,22:-23:-23:-23:

is a PayPal flow is equal to: P ({X1, . . . , X4}) = 0.055. In
comparison, the probability computed from the Twitter model
(cf. Figure 5) is equal to 0.003%, whereas the probability
computed from the Skype fingerprint (cf. Figure 9) is equal
to 0.

A. Examples of Fingerprints

Figures 4-9 illustrate the fingerprints derived for chosen
application traffic—they represent ENPD, the transition prob-
ability matrix, and EXPD. The diagrams are simplified for
clarity by including only the states with meaningful probabili-
ties (full models usually contain a large number of states). For
this reason, in some cases, ENPD and EXPD do not sum to
100%. Due to the space limitation, we only provide six models
out of twelve analyzed applications: PayPal, Twitter, Dropbox,
Mozilla, Gadu-Gadu, and Skype. The model parameters are
derived from a representative dataset (cf. Section IV-A for the
description of the Campus2 dataset). For Skype, the measured
data comes from the traffic dataset recorded for Skype service
flow classification [13].

1) PayPal: Figure 4 for PayPal shows that 92.8% of all ses-
sions start with the Server Hello message, whereas 7.1%
are Alert messages indicating handshake failure and closing
the session even before the authentication process. Moreover,
in case of successfully established sessions, the server always
sends Change Cipher Spec indicating modifications in
ciphering strategies. In 66.74% of sessions, the client authen-
ticates the server, whereas in the remaining cases, the session
is resumed using the Session ID (the handshake procedure is
shortened to the Server Hello message). Finally, from the
Exit Probability Distribution, we can conclude that in most
cases, successful sessions do not end up with the Alert
message coming from the server.

2) Twitter: Figure 5 indicates that 55% of SSL/TLS ses-
sions are resumed from previously negotiated ones. Contrary
to PayPal, almost 70% of remaining sessions do not change
ciphering strategy after the server authentication procedure (no
Change Cipher Spec message). Moreover, sessions tend
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to be rather short and are composed of Application Data
message followed by the Alert message (with probability
58.6%) terminating the session.
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Figure 6. Parameters of the fingerprint for Dropbox

3) Dropbox: Contrary to previously presented PayPal and
Twitter, the great majority of initial sessions (98.3%) never
resume previous SSL/TLS sessions as shown in Figure 6.
Furthermore, we can observe the Server Key Exchange
message that contains additional cryptographic information to
the Certificate message allowing the client to communi-
cate the premaster secret. Sessions are composed of multiple
Application Data messages, which reflects the specific
nature of the application. Again, the majority of sessions
(84.7%) are terminated by sending the Alert message. De-
spite the fact that sessions are highly consistent and message
sequences often repeat, we can observe quite a few unusual
states signaled by the Alert Protocol.
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Figure 7. Parameters of the fingerprint for Mozilla

4) Mozilla: In Figure 7 for Mozilla, we can observe a
rare initial state—so-called a multiple handshake message in
which we have identified three messages in a single TCP
segment with SSL/TLS handshake, namely Server Hello,
Certificate, and Server Hello Done, depicted as
22:(2,11,14). Also, the number of significant states is limited
to five.
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Figure 8. Parameters of the fingerprint for Gadu-Gadu

5) Gadu-Gadu: As we can observe in Figure 8, Gadu-Gadu
presents three possibilities to establish a session. The primary
one (64.5%) consist of a typical Server Hello message
followed by the Certificate and Server Hello Done
messages. In 95.7% cases, the Change Cipher Spec mes-
sage comes after. The second SSL/TLS handshake procedure
additionally includes the Server Key Exchange mes-
sage. Finally, 15.9% sessions are being resumed. The figure
suggests that on the average, Gadu-Gadu sessions consist of
a significantly larger number of messages in comparison to
PayPal, Mozilla, or Twitter. Moreover, we observe individ-
ual segments composed of multiple Application Data
messages, which presumably implies that application layer
messages are relatively short—this feature stands out from the
previous cases.

22:2
20:

21:

23:

22:

22.7%

35.1%

21%

19.3%

100%

33.5%

18.8%

16.5%

14.7%

16.5%

Enter Exit

Enter probabilities Transition probabilities Exit probabilities

Figure 9. Parameters of the fingerprint for Skype

6) Skype: Finally, we present the example of the Markov
chain analysis of the Skype traffic tunneled through SSL/TLS
(cf. Figure 9). Skype traffic represents a special case—the



Markov state space contains only six states. In addition to four
standard SSL/TLS protocol type messages, we do observe a
unique state interpreted by Wireshark as a Heartbeat Protocol
message defined in RFC 6520 [14], depicted as 24:. Briefly, the
Heartbeat Extension provides a new protocol for TLS allowing
the use of keep-alive functionality without performing a ses-
sion renegotiation. In this case however, all five protocols act
as application data protocols and directly provide application
layer data to the Record Protocol. After the transition from
the initial state to one of five remaining states with probability
70.6%, the transition probabilities between each of them are
very similar ranging from 18.9% to 21.2% (not depicted in
the figure for the sake of clarity).

Actually, Skype is a proprietary piece of software that
uses its own internal encryption mechanisms and a complex
connection protocol designed for bypassing firewalls and es-
tablishing communication regardless of network policies [13].
Skype randomly selects ports and can switch to port 443 if it
fails to establish a connection on chosen ports. Such technique
is sufficient to bypass network-layer firewalls, however, it
results in creating a particular SSL/TLS session and a salient
Markov fingerprint.

B. Cross-validation

To validate the constructed models, we apply a 4-fold cross-
validation based on four heterogeneous datasets described
in Section IV-A. More precisely, we create Markov chains,
compute the ENPD and EXPD vectors for application traffic
based on one dataset (training set) and validate the analysis
on the remaining three datasets (testing sets).

We perform validation as follows. First, we pre-process the
testing set to extract application flows and then the classifier
applies a decision process based on the Maximum Likelihood
criterion [15]. Validation based on models obtained in the
training process corresponds to a multi-hypothesis decision
problem. More specifically, we consider up to twelve hypoth-
esis Hi, i = 1, . . . , 12 corresponding to each of considered
applications. We apply a classical approach based on Max-
imum Likelihood criterion—we select the hypothesis under
which the data sequence Y is most likely:

H = argmax
Hi

logL({Y1, . . . , YT }|Hi), (7)

where L({Y1, . . . , YT }) is the likelihood of the input
data sequence under each hypothesis: L({Y1, . . . , YT }) ≡
P ({X1, . . . , XT }), the probability of a message sequence
computed over each fingerprint (cf. Eq. 6).

IV. CLASSIFICATION RESULTS

In this section, we present the results of cross-validation of
the fingerprints based on four trace datasets.

A. Datasets

To build and validate fingerprints, we have used four recent
heterogeneous datasets gathered on edge routers located in
a European country. The Campus1 and Campus2 datasets
come from two links connecting a large campus network

to the Internet. Campus1 dataset contains a one day long
trace starting from March 1, 2012, whereas the 24 hours long
Campus2 dataset was obtained starting from March 26, 2012.
The datasets labeled Campus3 and Campus4 consist of data
observed at a different part of the campus network than the
previous ones and were collected starting from July, 17, and
July 21, 2013, lasting one day and 42 hours, respectively. All
datasets contain only SSL/TLS encrypted traffic generated by
standard services such as Web, chat, mail, VoIP, file transfer,
or streaming applications. Moreover, we often refer to Skype
as an example of traffic tunneled through SSL/TLS. The
evaluation runs on two sets of packet traces generated in
the experiments of classifying Skype service flows [13]. We
merged two Skype datasets with Campus1 and Campus2
packet traces. For privacy reason, we analyze a TCP payload
and export only information from SSL/TLS headers, while the
actual payload is discarded.

B. Ground Truth
To establish the ground truth, we have developed a Domain

Name System Classifier (DNSC) to extract SSL/TLS applica-
tion flows according to their domain names. More specifically,
DNSC matches hostnames to an array of signature strings
such as twitter, r-*twttr in case of Twitter. Table I summarizes
domains used by DNSC for identifying different SSL/TLS
applications. We have confirmed the accuracy of the method

Table I
DOMAIN NAMES USED BY DNSC. IRRELEVANT STRINGS ARE REPLACED

BY AN ASTERISK.

Application Strings
PayPal *active*paypal*
Twitter *twitter.com, r-*twttr
Dropbox *dropbox*
Gadu-Gadu ip*gadu-gadu.pl
Mozilla *versioncheck*mozilla*
MBank www.mbank*
PKO ipko*
Dziekanat dziekanat.agh.edu.pl
Poczta poczta.agh.edu.pl
Amazon S3 s3*amazon*
Amazon EC2 ec2*amazon*

by manual payload inspection. Nevertheless, we might not
cover all instances of signatures for a particular application.
Another constraint of the approach is that we cannot obtain
the instances of applications, if we are not able to resolve IP
addresses into the corresponding domain names. For example,
we cannot extract Skype flows using DNSC because the
application relies on a Peer-to-Peer (P2P) infrastructure and
the traffic is relayed by ordinary hosts.

C. Application Selection
In our experimental evaluation, to overcome the limitations

of the DNSC classifier, we have selected the applications for
which the IP address resolution was possible and correspond-
ing strings are straightforward and unambiguous.

Table II presents the number of flows derived from the
training datasets for the purpose of cross-validation of fin-
gerprints. To estimate the minimal number of flows required



Table II
NUMBER OF FLOWS CORRESPONDING TO EACH APPLICATION IN FOUR

DATASETS.

Application Campus1 Campus2 Campus3 Campus4
PayPal 546 421 – –
Twitter 1257 1500 8848 10308
Dropbox 1160 3134 4714 5253
Gadu-Gadu 659 807 1318 1779
Mozilla 1017 1076 2431 1567
MBank 644 94 675 459
PKO 354 420 1574 1137
Dziekanat 1162 1706 2655 609
Poczta 680 944 944 4420
Amazon S3 238 321 1587 1310
Amazon EC2 109 314 5798 610
Skype 210 207 – –

Table III
CLASSIFICATION RESULTS FOR THE FINGERPRINTS. TRAINING DATASET:
CAMPUS1, VALIDATION DATASETS: CAMPUS2, CAMPUS3, CAMPUS4

Campus2 Campus3 Campus4
Application TPR FPR TPR FPR TPR FPR
PayPal 0.76 0.007 – – – –
Twitter 0.932 0.013 0.768 0.029 0.791 0.023
Dropbox 0.922 0.001 0.971 0.007 0.957 0.009
Gadu-Gadu 0.865 0.001 0.535 0.053 0.59 0.063
Mozilla 0.998 0.0 0.0 0.0 0.0 0.0
MBank 0.67 0.03 0.008 0.025 0.0 0.01
PKO 0.957 0.016 0.916 0.164 0.92 0.12
Dziekanat 0.807 0.005 0.83 0.0 0.805 0.001
Poczta 0.976 0.025 0.97 0.008 0.97 0.02
Skype 0.986 0.002 – – – –

to create a reliable application fingerprint, we have applied
the following procedure: we start with a model based on
a randomly chosen flow. We build the state space and the
transition matrix corresponding to a first-order homogeneous
Markov chain. Therefore, we enrich the model by randomly
including flows one by one and we observe the stability of the
model. When the number of states, transitions and transition
probabilities do not significantly change when enriching the
model, the fingerprint can be included in the validation pro-
cess. Depending on the application, the minimal number of
the required flows may vary. However, even if the number of
flows for some application is not sufficient to create a model,
e.g. Amazon S3 or EC2 in Campus1 or Campus2, they can
still serve to validate fingerprints built upon other datasets.

Table IV
CLASSIFICATION RESULTS FOR THE FINGERPRINTS. TRAINING DATASET:
CAMPUS2, VALIDATION DATASETS: CAMPUS1, CAMPUS3, CAMPUS4

Campus1 Campus3 Campus4
Application TPR FPR TPR FPR TPR FPR
PayPal 0.749 0.007 – – – –
Twitter 0.847 0.003 0.438 0.012 0.528 0.007
Dropbox 0.984 0.009 0.987 0.056 0.985 0.06
Gadu-Gadu 0.975 0.015 0.521 0.146 0.569 0.153
Mozilla 0.988 0.0 0.0 0.0 0.0 0.0
PKO 0.901 0.027 0.889 0.141 0.898 0.098
Dziekanat 0.997 0.002 1.0 0.005 0.995 0.006
Poczta 0.961 0.003 0.968 0.009 0.969 0.019
Skype 0.986 0.001 – – – –

D. Criteria of Cross-validation

We assume that the classification based on the DNSC
reference classifier provides a reliable benchmark and we
validate SSL/TLS models with respect to its classification
decisions. We consider two meaningful metrics to assess the
performance of the classification method: the true positive
(TP) and false positive (FP) rates (denoted TPR and FPR,
respectively). True Positive occurs when the validation result
is consistent with the classification decision taken by DNSC
and the application session is correctly classified as a given
application, e.g. a PayPal session is accurately recognized as
PayPal. Conversely, False Positive occurs when the validation
result is inconsistent with the decision taken by the reference
classifier and a session is incorrectly classified, e.g. a Twitter
session is falsely recognized as PayPal.

E. Cross-validation Results

Section III-A has shown that we can observe a great variety
of SSL/TLS message exchanges. The parameters of the derived
fingerprints differ considerably, which is the basis for accurate
application discrimination. In this section, we report on the
4-fold cross-validation results of the application models in
which Campus1-4 datasets served for training and validation
alternately (cf. Table III-VI).

Let us take the example of Amazon S3, for which we
have observed that the TP rate exceeds 97% regardless of
the classification datasets used for training and validation
(cf. Table V and VI). By manual inspection, we have found
a multiple handshake message state observed previously in
the Mozilla models built from the packet traces collected in
March of 2012 (cf. Figure 7). This is also the reason why
we experience a higher FP rate when validating Amazon S3
models on the Campus1 and Campus2 datasets.

Table V
CLASSIFICATION RESULTS FOR THE FINGERPRINTS. TRAINING DATASET:
CAMPUS3, VALIDATION DATASETS: CAMPUS1, CAMPUS2, CAMPUS4

Campus1 Campus2 Campus4
Application TPR FPR TPR FPR TPR FPR

Twitter 0.932 0.007 0.908 0.04 0.907 0.018
Dropbox 0.692 0.01 0.704 0.005 0.922 0.01
Gadu-Gadu 0.97 0.004 0.916 0.004 0.781 0007
Mozilla 0.001 0.028 0.0 0.023 0.405 0.041
MBank 0.02 0.006 0.0 0.007 0.817 0.018
PKO 0.597 0.005 0.537 0.004 0.595 0.035
Dziekanat 0.966 0.093 0.933 0.012 0.988 0.0
Poczta 0.942 0.002 0.967 0.004 0.97 0.0
Amazon S3 0.978 0.146 0.991 0.111 0.996 0.0
Amazon EC2 0.02 0.007 0.035 0.084 0.579 0.013

To better understand the results for Dropbox, let us consider
its architecture and operation. The control and data storage
servers are two major components of its architecture [16].
While the former is controlled by Dropbox Inc., the latter is
managed by the Amazon S3 and EC2 servers. As we could
expect, in some cases, Dropbox flows are incorrectly classified
as Amazon EC2 resulting in a lower TPR (cf. Table V and
VI). However, the classification based on models built upon the
most recent flows coming from the Campus3 and Campus4



Table VI
CLASSIFICATION RESULTS FOR THE FINGERPRINTS. TRAINING DATASET:
CAMPUS4, VALIDATION DATASETS: CAMPUS1, CAMPUS2, CAMPUS3

Campus1 Campus2 Campus3
Application TPR FPR TPR FPR TPR FPR

Twitter 0.936 0.01 0.911 0.041 0.887 0.026
Dropbox 0.672 0.005 0.7 0.005 0.919 0.06
Gadu-Gadu 0.975 0.011 0.929 0.01 0.684 0.013
Mozilla 0.001 0.029 0.0 0.023 0.29 0.035
MBank 0.0 0.013 0.0 0.01 0.903 0.037
PKO 0.521 0.005 0.489 0.003 0.575 0.032
Dziekanat 0.959 0.092 0.929 0.012 0.994 0.0
Poczta 0.924 0.002 0.935 0.003 0.97 0.0
Amazon S3 0.982 0.142 0.99 0.112 0.994 0.0
Amazon EC2 0.146 0.044 0.001 0.079 0.598 0.01

datasets lead to TPR higher than 90%. The accurate fingerprint
comes from the nature of Dropbox sessions: they exchanged
a lot of data after the handshake process, which results in
long SSL/TLS sessions composed of multiple application data
protocol messages.

We have found a reliable fingerprint for the Poczta applica-
tion for all four datasets. The most commonly observed state
in SSL/TLS exchanges is composed of four application data
protocol messages merged together: 23:23:23:23:.

The Skype traffic tunneled over the SSL/TLS protocol
results in a unique fingerprint. The number of transitions
depends on the service such as voice calls, chat, skypeOut or
file sharing, and the amount of data to be sent. Every few to
tens of seconds, Skype encapsulates a huge portion of data (in
comparison to typical values) ranging from 3KB up to 65KB
in one of its 6 SSL/TLS protocol types. Such an SSL/TLS
segment is further divided into multiple TCP segments and
sent across the network. This behavior is consistent with
the real-time nature of Skype—creating multiple SSL/TLS
messages could potentially increase the processing time and
influence the quality of experience.
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Figure 10. Parameters of the fingerprint for Twitter

Although, the proposed methodology results in very reliable
application fingerprints, it may fail in some cases. For instance,
we have identified a specific Markov chain instance in the
fingerprint for Amazon EC2. It is composed of 5 states and
more than 53% of all of its SSL/TLS sessions generate the
same transition chain. The drawback is that the probabilities
of all other chain instances of Amazon EC2 are very low,

which results in a false negative rate not lower than 40% (cf.
Table V and VI).

F. Time Evolution of Markov Fingerprints

We have run our tests twice during the last one year and
a half to study the evolution of the SSL/TLS fingerprints. By
analyzing Markov chains, we can also extract a variety of
meaningful information and possibly evaluate the changes in
cryptographic practices of application servers. For example,
we can clearly observe that the classification based on the
fingerprints generated for Twitter and Gadu-Gadu in March
2012 (datasets Campus1 and Campus2) results in a worse
TPR compared to the validation on two recent Campus3
and Campus4 datasets. Moreover, the classification based
on the Mozilla and MBank fingerprints failed because of
implementation changes between the two observation periods.

Let us focus on the Twitter application. Figure 10 presents
the fingerprint based on one of two most recent datasets,
namely Campus3. To emphasize the fingerprint differences
between the older model (cf. Figure 5) and the recent one, we
have thickened the new states and transitions. When comparing
with the fingerprint based on traffic collected one year earlier,
we can notice only a change in the SSL/TLS segmentation.
More specifically, we can observe a new state in the ENDP
vector created by merging two neighboring states from the
older model. In this case, enriching the model with recent
application flows can significantly improve classification per-
formance.
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Figure 11. Parameters of the fingerprint for Gadu-Gadu

Figure 11 presents a recent fingerprint for Gadu-Gadu.
When comparing with the older model in Figure 8, the
primary transition composed of the Server Hello and
Certificate messages followed by a state that con-
sists of the Server Key Exchange and Server Hello
Done messages is replaced by one initial state composed of
the Server Hello, Certificate, and Server Hello
Done messages. In other words, in the recent Gadu-Gadu
fingerprints, we have not observed either Server Key
Exchange or the associated Diffie-Hellman (DHE) key ex-
change algorithm. It means that either the application has



changed the key exchange methods and does not support
the DHE algorithm anymore or, which is less likely, all ob-
served clients have used the RSA, DH_DSS, or DH_RSA key
exchange methods in which the Server Key Exchange
message is not allowed [10].
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Figure 12. Parameters of the fingerprint for Mozilla

Finally, as we have expected by analyzing the cross-
validation results, a simple “service version check” maintained
by Mozilla has changed the SSL/TLS security implemen-
tation since last year. As a result, the previously obtained
very reliable fingerprint is not valid anymore (for detailed
comparisons, please refer to Figures 7 and 12). Moreover,
while the fingerprints built upon the most recent datasets,
namely Campus3, Campus4 are consistent with one another,
the cross-validation results are poor, because the resulting
fingerprints correspond to typical patterns widely observed in
the Internet. To conclude, application fingerprints may evolve
over time and need a periodical or even constant update.

V. DISCUSSION

Below, we discuss the reasons for which our method results
in a precise discrimination of applications.
Incorrect/diverse implementation practices: First, we have
noticed that many protocol implementations do not follow
the RFC specifications and behave slightly different from
common SSL/TLS stacks. For example, in Campus1 and
Campus2 datasets, we have observed that PayPal does not
support extensions in the TLS protocol version 1.0 necessary
for extensibility and security [17], [18]: the implementation
simply rejects the Client Hello messages that contain
extensions. This is the reason why, contrary to other appli-
cations, 7.1% of all PayPal sessions start (and terminate) with
the Alert messages. A recent RFC draft discusses other
incorrect practices of HTTP implementations over TLS [19]. A
counterexample is a recent verified reference implementation
of TLS 1.2 that supports all protocol functions, as prescribed
in the RFCs [20]. Moreover, an increasing number of protocol
extensions are available to expand the functionality of the TLS
protocol (e.g. Heartbeat extension), which results in highly
differentiated implementation practices.
Misuse of the SSL/TLS protocol: SSL/TLS tunneling is
increasingly used as a tool for bypassing restrictions set by
network configuration and security checks instead of using
SSL/TSL for enforcing security. For example, since Skype

uses its own security and a real-time communication protocol,
SSL/TLS tunneling is only adopted to bypass network-layer
firewalls. As a result, the SSL/TLS stack fingerprint is reduced
to a few transitions, which significantly differs from other
models.
Server configuration: Some SSL/TLS protocol messages are
defined as optional or context-dependent. For example, in the
two first datasets of our study, we have not observed any
Server Key Exchange message in PayPal and Twitter
sessions, whereas in the case of Dropbox, it always follows
the Certificate message. The behavior depends on key
exchange methods. For some of them (DHE_DSS, DHE_RSA,
DH_anon), the server sends Server Key Exchange, be-
cause the Certificate message does not contain enough
data to allow the client to exchange the premaster secret.
However, for some other methods (RSA, DH_DSS, DH_RSA)
the Server Key Exchange message is illegal [10].
Application nature: While some SSL/TLS server commu-
nication parameters can be configured and possibly changed
over time, others reflect the nature of the application and
depend on the service implementation. It is noteworthy that
they may reflect some flow features like the session duration
or the content size. For example, we can observe only few
session transitions in case of Twitter, which enables its users
to send short text-based messages of up to 140 characters,
whereas in case of the proprietary Gadu-Gadu protocol, we
may observe more than one hundred session transitions that
reflect its instant messaging character (i.e., high interaction
between users). Moreover, the Gadu-Gadu SSL/TLS messages
are relatively short, so individual session states are composed
of multiple Application Data messages. Contrary to
Gadu-Gadu, the Skype SSL/TLS protocol messages are long
and need to be divided in multiple TCP segments before
sending across the network—this is another feature that cannot
be easily evaded or changed with time due to the application
nature.

VI. RELATED WORK

As new Internet applications started to use obfuscation
methods (port masquerading, tunneling, packet encryption),
traditional classification methods based on simple pattern
matching are no more reliable. In our work, however, we
demonstrate that it is possible to effectively model application
flows by inspecting application layer protocols. Risso et al.
introduced a taxonomy of payload-based classification meth-
ods [9] and argued that they are mainly based on pattern
verification. We believe that a key challenge in encrypted
traffic classification is to replace traditional pattern verification
with more sophisticated statistical fingerprinting.

Some authors focus on classification of encrypted traffic [4],
[21], [13], [22]. Bernaille and Teixeira proposed a method
based on the size of the first few packets of an encrypted
connection, which enables an early application recognition
with the accuracy of more that 85% [4]. A more recent
hybrid method tries to identify SSL/TLS encrypted application
layer protocols with a combination of a signature-based and a



flow-based statistical analysis scheme [21]. Both methods are
related to our proposal, however their objectives are limited
either to the SSL/TLS application recognition or to classifi-
cation of encrypted application layer protocols. In this work,
we focus on an in-depth analysis of the SSL/TLS protocol
message sequences to characterize and classify application
flows. In our previous work, we considered the problem of
detecting Skype traffic and classifying its service flows. We
proposed a classification method for Skype traffic tunneled
over TLS in addition to proprietary encryption. The method
is based on the Statistical Protocol IDentification (SPID) that
analyzes the distributions of flow and application layer data
[13].

Bissias et al. presented a traffic analysis attack against
encrypted HTTP streams to identify the source of the traffic by
analyzing distributions of packet sizes and inter-arrival times
of web requests from interesting sites [23]. Even if their work
differs from our paper in terms of objectives and methodology,
the conclusions remain the same: encrypting traffic does not
prevent from performing some types of traffic analysis.

Lee et al. and Levillain et al. evaluated the practices of
SSL/TLS servers by investigating server replies [24], [18].
They studied the details of the encryption parameters, e.g. ci-
pher suites, key sizes, and protocol features such as supported
versions and their extensions. Our work is a further step in
this direction.

VII. CONCLUSIONS

In this paper, we have proposed stochastic fingerprints for
application traffic flows conveyed in SSL/TLS sessions. The
fingerprints are based on first-order homogeneous Markov
chains for which we identify the parameters from observed
training application traces. As the fingerprint parameters of
chosen applications differ considerably, the method results in a
very good accuracy of application discrimination and provides
a possibility of detecting abnormal SSL/TLS sessions. We have
also shown that application fingerprints need to be updated
periodically, because they change over time.

Our analysis of the results reveals that obtaining application
discrimination mainly comes from incorrect and diverse imple-
mentation practices, the misuse of the SSL/TLS protocol, var-
ious server configurations, and the application nature. Finally,
even if we are able to identify some very reliable statistical
fingerprints for selected applications, it is also possible to
evade the classification by avoiding implementation mistakes
and building the secure layer on limited, but widely-used set
of SSL/TLS states.

In the future work, we plan to investigate further the
proposed method on a wider range of Internet applications
and cross-validate on other heterogeneous datasets gathered in
various subnetworks. We also aim at analyzing the SSL/TLS
stack to verify its consistency with protocol recommendations
and best security practices. Finally, we plan to apply the ap-
proach to reveal intrusions that exploit the SSL/TLS protocol
by establishing suspicious, unlikely sessions.
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