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Abstract

We consider the problem of interconnecting hosts in
spontaneous edge networks composed of various types of
wired or wireless physical and link layer technologies. We
argue that this kind of networks requires a more sophisti-
cated approach than standard IP forwarding: communica-
tion paths should be managed on a per flow basis, multiple
paths need to be maintained to cope with link failures or
changing topologies, and the interconnection architecture
should provide a means for acquiring the information on
destination reachability. To experiment with our approach,
we have designed and implemented Lilith, a prototype of
an interconnection node for spontaneous edge networks. We
handle network dynamics by establishing MPLS(Multi Pro-
tocol Label Switching)label switched paths (LSP) on de-
mand with a reactive ad hoc routing protocol. We present
some measurements that show good performance with re-
spect to the standard IP forwarding and important perfor-
mance gains when multiple paths are used.

1. Introduction

Ubiquitous computing involves a wide range of elec-
tronic equipment such as sensors and actuators, home ap-
pliances, consumer electronics, and various computing de-
vices. Situated at places like homes, offices, or public sites,
they can be connected via heterogeneous wired or wireless
physical and link layer technologies. Some devices have
permanent location and others, such as handheld comput-
ers, move around changing their current point of attach-
ment. All devices may benefit from the global Internet con-
nectivity via one or more border routers. We consider the
problem of interconnecting hosts in suchspontaneous edge
networksas illustrated in Figure 1.

The performance of wireless local area networks in-
creases with the evolution of the physical layer (802.11a and
802.11g) so that they begin to connect audio/visual home
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Figure 1. Spontaneous edge network

entertainment devices, but only over short distances. To
cover larger areas, we can organize nodes into a multi-hop
network to provide increased aggregated capacity, greater
redundancy, and potentially multiple paths. Hence, we as-
sume that all or some of hosts in a spontaneous network are
organized as a multi-hop ad hoc network.

Another aspect of spontaneous networks is related to
sensor networks in which small low power devices commu-
nicate over short range wireless links by using protocols op-
timized for low power consumption. Such sensor networks
are usually organized in a hierarchical way: sensors com-
municate with base stations or application gateways having
more power and communication bandwidth. A spontaneous
edge network can suitably interconnect clusters of sensors,
gateways, and appliances as well as provide access to the
global Internet.

In this paper we propose an interconnection architecture
suitable for spontaneous edge networks. Obviously we can
use IP for interconnection, however we argue that this kind
of networks requires a more sophisticated approach: com-
munication paths should be managed on a per flow basis,
multiple paths need to be maintained to cope with link fail-



ures or changing topologies, and the architecture should
provide a means for acquiring the information on destina-
tion reachability. At the same time, the proposed intercon-
nection protocol should be lightweight and efficient.

We have designed and implemented Lilith, a prototype of
an interconnection node for spontaneous edge networks. It
uses MPLS(Multi Protocol Label Switching)[7], the stan-
dard layer 2.5 for efficient forwarding of packets over vari-
ous links. A flow follows a Label Switched Path (LSP) es-
tablished on demand by an ad hoc routing protocol. Flows
with different QoS requirements may use different LSP
paths, for example we can make time-sensitive flows such
as video go over high capacity links whereas Web traffic
can use other links with lower capacity, or we can construct
paths over links with good radio channel quality. While the
best path (in the sense of some metrics) is used at a given in-
stant, Lilith searches for other possible paths to use in case
of a link failure or a change in topology . A Lilith node ex-
pects to periodically receive messages with statistics of the
traffic on each LSP received by all its immediate neighbors.
Such information can then be used to decide if a given link
is broken, in which case it switches to another path. If it
is not the case, Lilith uses the information to estimate link
quality, the metrics that can be injected into the routing pro-
tocol.

In this paper we focus on the implementation and perfor-
mance measurements of Lilith. A companion paper [8] pro-
vides more details on the motivation of our approach, com-
parisons with other proposals, and details of the design. The
rest of the paper is organized as follows. We first briefly dis-
cuss the related work (Section 2) and describe the architec-
ture of our proposal (Section 3). Then we present the im-
plementation and measurement experiments (Section 4). Fi-
nally, we present conclusions and future work (Section 5).

2. Related work

Spontaneous edge networks are mainly related to ad hoc
routing protocols and interconnection architectures for sen-
sor networks.

The dynamic structure of spontaneous networks speaks
in favor of considering them as ad hoc networks [5]. The
MANET IETF working group has chosen to provide con-
nectivity to a group of wireless hosts at layer 3: each host
acts as a router to forward packets to other hosts, so the
network behaves as a standard IP network without any ad-
vanced functionality.

Wireless sensor networks have recently received consid-
erable attention [1]. Their characteristics are so different
from the ad hoc networks studied by MANET that new pro-
tocols had to be developed. The main difference is the lim-
ited power and computational resources, so the proposed
MAC and network layer protocols try to optimize these as-

pects and focus less on traditional performance objectives.
The authors of the survey notice the importance of new in-
terconnection schemes to allow easy communication be-
tween sensor networks and external networks such as the
Internet [1].

Interconnecting clusters of sensors has become an im-
portant aspect of research. Relay Organization (ReOrg) is
a topology control protocol which systematically shifts the
network’s routing burden to energy-rich nodes, exploiting
heterogeneity [3]: high end powered nodes communicating
via a 802.11 mesh network overlay sensor networks to in-
crease the performance of sensor networks and their life
time [3]. Similar approach has been adopted in the PEN
project (Prototype Embedded Network) [9] that aims to
build a wireless ubiquitous network composed of small, low
cost, and low power nodes. End-to-end communication over
a network for home automation such may benefit from a
simple“wormhole routing”: packets traverse a higher per-
formance wired link between sensor radio spaces. A more
elaborated switched routing service called R-Link has also
been designed and built to support routing of data between
arbitrary devices on demand.

The interconnection of hosts in home and office net-
works has been analyzed by Krishnamurthyet al. [4]. They
have identified the main requirements of wireless home net-
works: autoconfiguration and meeting performance objec-
tives by using multi-hop wireless technologies. However,
no solutions have been proposed. We share their analysis
and provide an interconnection architecture to satisfy the re-
quirements.

3. Architecture of Lilith

We propose an interconnection architecture based on ex-
isting standard technologies (MPLS, on demand ad hoc
routing) which glued together present several interesting
features for spontaneous networking. Its idea is to organize
a spontaneous network as a single IP subnetwork (broadcast
or scoped multicast packets propagate to all hosts), to in-
terconnect various links with MPLS, the standard layer 2.5
protocol, and to manage LSP (Label Switched Path) paths
on demand with a reactive ad hoc routing protocol.

Integrating a connection based MPLS forward-
ing scheme with dynamic establishment of label switched
paths presents several advantages for spontaneous net-
works. First, transient loops can be easily avoided, be-
cause LSP paths are explicitly created between end point
hosts. Such a property is particularly interesting in the con-
text of wireless networks with limited resources. Second,
we can provide multiple paths for load balancing or traf-
fic isolation for different QoS classes, including per
flow, or per source or destination address. Another ad-
vantage is the possibility of acquiring the information



on the reachability of established LSPs: an interconnec-
tion node periodically sends a message with statistics of
traffic received from all its neighbors.

Our approach can be characterized asreactive, because
Lilith finds the best path at a given instant on demand. It is
alsoproactive, because it maintains existing paths and tries
to find alternate paths that can be immediately used as a
back up after a link failure. Note that the hybrid approach
allows elimination of broadcast storms if there is an exist-
ing alternate path when a link fails.

To experiment with our approach, we have designed and
implemented Lilith, a prototype of an interconnection node
for spontaneous networks based on MPLS.
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Figure 2. Protocol stack and packet path

Lilith forms with MPLS a layer 2.5 that presents to IP the
abstraction of a single broadcast (scoped multicast in IPv6)
link layer network. In this architecture, routes and data paths
are dissociated so that different protocols can be used for
finding a route and establishing a data path. A route is a
list of intermediate nodes between a source and a destina-
tion. It is not used for forwarding packets, but for establish-
ing a path between the source and the destination. Figure 2
presents the structure of the protocol stack at hosts and in-
termediate nodes as well as the data path taken by a packet.

The architecture of Lilith is presented in Figure 3. It re-
lies on an ad hoc routing protocol, which in the current im-
plementation is based on a simple reactive routing mecha-
nism similar to AODV [6]. When describing the elements
of Lilith below, we use the routing protocol as an example,
however it can be replaced by any other ad hoc routing pro-
tocol, even a proactive one such as OLSR [2].
Lilith is composed of the following elements:

Interception module.It intercepts unicast packets for which
no LSP exists and all broadcast packets. The unicast pack-
ets are passed to the Routing Protocol module that starts the
search for a route, which in turn will trigger the establish-
ment of a LSP. When it is done, the packet can be sent over
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Figure 3. Architecture of Lilith

the LSP. Broadcast packets are passed to the Routing Pro-
tocol that uses the underlying route discovery mechanism
(flooding) to propagate them to all hosts in the subnetwork.

Routing Protocol module.It implements the routing pro-
tocol, a reactive ad hoc protocol similar to AODV though
less complex. Its purpose is to provide at least one path for
a route, so we can establish a LSP to the destination. The
protocol makes use of two messages: ROUTE REQUEST

and ROUTE REPLY. When a route is needed, it generates
a ROUTE REQUESTmessage containing a record of visited
nodes. The request is flooded across the subnetwork and
each intermediate node adds itself to the record. Once the
request reaches the destination host, it generates a ROUTE

REPLY that comes back on the reverse path. The destination
host can reply to more than one request and thus initiate the
construction of more than one LSP so that the requesting
host may choose among several possible paths. The proto-
col uses BROADCAST message to propagate a broadcast or
a scoped multicast to all nodes of the subnetwork. Our cur-
rent implementation uses flooding for this purpose.

LSP Establishment module.The module uses a LSP estab-
lishment protocol based on two messages: PATH REQUEST

and PATH REPLY. PATH REQUEST propagates to the des-
tination that replies with PATH REPLY carrying the label
bindings for LSP establishment. At each node on the re-
verse path the LSP Establishment module modifies the LIB
(Label Information Base), the table used by MPLS for for-
warding packets based on label switching. The LIB modi-
fication actually creates a LSP path at a given intermediate
node or a host. In the current implementation the LSP estab-
lishment protocol is closely coupled with our reactive rout-
ing protocol—PATH REQUEST is included in ROUTE RE-
QUESTmessage and PATH REPLY in ROUTE REPLY.



LSP Maintenance module.It acknowledges traffic received
over established LSPs by periodically sending I’M ALIVE

(IMA) message to all immediate neighbors using a link
layer broadcast. The message carries a list of labels and the
amount of data received on each active LSP during the last
period of time. This information can then be used to de-
cide if a given link is broken, in which case it switches to
another path. If it is not the case, Lilith uses the informa-
tion to estimate link quality, the metrics that can be injected
into the routing protocol. If there is no traffic received for
an outbound label during an interval, the corresponding en-
try in the LIB is deleted. Lilith detects existing long-lived
TCP connections that do not send data for long periods of
time and sends probe MPLS packets over the correspond-
ing LSP to keep them active.

LSP Optimization module.It tries to find alternate routes
for existing active destinations using the Routing Protocol
module. This search is done in the background and does not
interfere with the data flow over existing LSPs. The mod-
ule evaluates the quality of candidate alternate routes and,
if relevant, establishes paths using the LSP establishment
module. A newly established LSP can either be used as a
backup or become the primary LSP if it is significantly bet-
ter.

4. Implementation

We have implemented Lilith as a user space daemon us-
ing the Linux version of MPLS for forwarding (we do not
use any MPLS signaling protocols such as LDP). The inter-
action with the kernel needed for modifying the routing ta-
bles or controlling the MPLS layer takes place via well de-
fined interfaces, so that the next version can be easily inte-
grated within the kernel or ported to other platforms having
sufficient support for intercepting packets.

The implementation of the packet interception module
usesnetfilter with libipq that enable user-space ap-
plications to get packets from the kernel and process them.
If there is no route in the kernel routing table for the des-
tination of a packet, Lilith stores the packet in a buffer and
activates the routing protocol module to find a route. Lilith
directly manipulates the LIB (Label Information Base) to
establish or delete LSP paths when needed. The buffered
packet is sent by the MPLS layer once a LSP path is estab-
lished for the destination. The establishment of a LSP path
creates an entry in the kernel routing table for the destina-
tion node so further packets to this destination are no more
buffered in the packet interception module. The routing pro-
tocol and LSP establishment modules are implemented as
application level protocols over UDP.

4.1. Experiments

To evaluate our prototype we have first measured com-
munication performance in a wired network composed of
four nodes connected via a 100Mb/s Ethernet hub (the chan-
nel is shared by all nodes) or switch (simultaneous transmis-
sions on different ports are possible) as illustrated in Fig-
ure 4. A and D are hosts and B and C intermediate nodes. In
the experiment, we wanted to evaluate the overhead of using
Lilith with respect to standard IP forwarding. Using a wired
network instead of a wireless LAN such as 802.11 enables
us to eliminate some sources of performance inaccuracy—
the behavior of the Ethernet hub is similar to that of a wire-
less shared medium LAN and we avoid taking into account
wireless artifacts such as hidden receivers. Although inter-
connected at layer 2, we needed to make the platform be-
have like a multi-hop network, so we have set up filtering
rules that allow only neighbor nodes to communicate with
each other (dashed lines).

DCBA

Hub / Switch

Figure 4. Setup for the first experiment

We have measured the round trip time and the through-
put between hosts A and D by usingping andnetperf .
The measured cases are the following:

1. IP forwarding through a static route across four nodes:
this case serves as a reference as it measures the ex-
pected performance when the interconnection is done
at layer 3,

2. IP forwarding as in case 1, but now each packet passes
through the user space daemon: this case allows us to
compare the current implementation of Lilith with IP
forwarding,

3. MPLS forwarding: we use Lilith to establish a LSP
path and then disable Lilith to measure the raw per-
formance of MPLS forwarding,

4. MPLS forwarding over a LSP established by Lilith,
Lilith continues to work.

To understand what happens when Lilith is running (case
4), we give the sequence of events that occur whenping
generates the ICMP Echo Request (similar events occur for
the ICMP Echo Reply):



1. A intercepts the ICMP Echo Request and looks up the
kernel routing table for an entry for D; there is no such
entry, so the packet is buffered,

2. A floods the ROUTE REQUESTpacket combined with
a PATH REQUESTfor D,

3. B receives the packet and floods it,

4. C receives the packet and floods it,

5. D receives the packet and starts establishing a LSP
path by sending the ROUTE REPLY combined with the
PATH REPLY to A,

6. the packet goes through C and B that establish the LSP
by setting up entries in the LIB tables.

7. A establishes the LSP in a similar way, creates an entry
in the kernel routing table for D and sends the buffered
ICMP Echo Request.

Case 1 2 3 4

First ping (ms)
ARP cache cleared, 0.9 1.0 0.8 6.0
64B packet size
Average ping (ms) 0.3 0.3 0.3 0.5
64B packet size
Average ping (ms) 0.8 0.8 0.8 1.0
1000B packet size
Throughput (Mb/s) 22.6 22.5 22.5 22.3
Connection via a hub
Throughput (Mb/s) 91.4 91.4 91.1 91.0
Connection via a switch

Table 1. Performance comparison

Table 1 presents the results of the measurements. We can
observe an important overhead of the LSP establishment for
the first ping (case 4), but then the difference in the round
trip time is fairly small. At the beginning, Lilith has to find
a route to the destination and establish a LSP path for both
the ICMP Echo Request and Echo Reply. We can observe
that the throughput is only slightly decreased: 1.3% when
a hub is used and 0.4% for a switch. The overhead is due
to the MPLS overhead, the kernel/user space copy for each
packet at the source node, and I’M ALIVE packets sharing
the links. The measurements confirm that the data transport
over a LSP path has almost the same performance as stan-
dard IP forwarding.

The second experiment shows the advantage of using
multiple routes. We consider the network illustrated in Fig-
ure 5. There are two routes between A and D: route 1 going
through node B and route 2 going through node C. We run
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Figure 5. Setup for the second experiment

Hub / Average RTT standard
Route Switch RTT (ms) deviation (ms)

1 Switch 5.3 0.08
2 — 0.5 0.07

1 Hub 12.0 3.55
2 — 0.3 0.07

Table 2. Performance over multiple routes

netperf between A and D to generate greedy TCP traf-
fic (A has always data to send) over route 1. We then mea-
sure the round trip time on both routes usingping . The
measurement results are presented in Table 2.

We can observe an important impact of the TCP traf-
fic generated bynetperf on the round trip time for route
1, while there is no impact on the round trip time on route
2: the round trip time for route 1 is more than ten times
longer than that of route 2. Our label switched architecture
makes it possible to use a second route to communicate with
a given destination, which is not possible in the standard IP
forwarding. For example, we can send a high bandwidth,
streaming traffic over route 1 and time sensitive traffic over
route 2.

Source Target
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Figure 6. Setup for the third experiment

In the third experiment, we observe the dynamic behav-
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ior of Lilith in a setup with several possible routes (cf. Fig-
ure 6). The experiment illustrates how Lilith reacts to link
failures and performs route optimization if necessary. Fig-
ure 7 presents the measured round trip time (in ms) dur-
ing the experiment. At the beginning, the source node starts
transmitting packets to the target node. Lilith queues the
packets up while establishing a path so that the RTT of the
first ones do not appear in the graph (their RTT is greater
than the scale of the graph). Then we can observe a sta-
ble delay less than 1 ms over path 1. Afterwards, we cut the
link on path 1 so that after three missing IMA messages1

Lilith switches to path 2. Then we repeat the same manip-
ulation with path 2. When this path also disappears, path
3 takes over the traffic until path 1 is operational again, in
which case the optimization module reroutes the traffic. We
can see that route optimization is not simultaneous on the
route towards the target and back to the source—some in-
termediary RTT values can be observed between phase 3
and 4.

5. Conclusions and future work

When sensor networks and ubiquitous computing de-
vices are interconnected and accessible from the global In-
ternet, they naturally form a spontaneous edge network.
Usually the communication and computing resources of
such networks are limited so the interconnection architec-
ture requires careful design. We have presented an origi-
nal approach based on dynamic label switching. Our goal
is to allow different communication paths on a per flow
basis, provide seamless switching between operational and
back-up paths, and make available information on destina-
tion reachability. By interconnecting all links at layer 2.5 so
that they appear as one single IP subnet, we are also able to

1 This number is configurable—it was 3 in our experiments and the fre-
quency of sending IMA was 2 s.

get rid of administration burden—standard autoconfigura-
tion protocols such as DHCP, router discovery in IPv4, IPv6
router and neighbor discovery, service discovery (mDNS,
LLMNR, UPnP, SLP, JINI) can run as if they were on a sin-
gle LAN.

Using on demand label switching is a first step towards
handling QoS aspects. LSP paths can take into account
some QoS parameters in route discovery, for instance pre-
ferring routes that use more wired hops or feature wire-
less links with better quality. The connection oriented na-
ture of Lilith opens new possibilities for various types of
QoS based routing. For instance we plan to investigate dif-
ferent algorithms for choosing the best routes based on QoS
metrics.

Our first prototype shows very good performance com-
pared with traditional IP forwarding. We observe only a
slight throughput degradation when using Lilith, however
we benefit from all the features provided by MPLS, for in-
stance taking advantage of multiple paths for different traf-
fic classes. In the current implementation, broadcasts may
be not as efficient as they can be because we use simple
flooding. We want to investigate other approaches for sup-
porting broadcast (or scoped multicast).
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