Low Overhead Loop-Free Routing in Wireless Sensor Networks

Henry-Joseph Audéoud, Michał Król, Martin Heusse, and Andrzej Duda

Grenoble Institute of Technology, CNRS Grenoble Informatics Laboratory UMR 5217, Grenoble, France

Low Overhead Loop-Free Routing in Wireless Sensor Networks — Talk outline

- <u>LRP</u>: Lightweight Routing Protocol
- Based on a collection tree
- Downward host routes
- Loop-free local repair mechanism
- Loop-free IP packets routing
- Low Overhead
- Evaluations experiments

Presentation of LRP

LRP — Collection Tree

- Collect outgoing traffic
- Default routes directed to the root
- Construction similar to RPL

Collection Tree Construction,

using DODAG Information Object (DIO) messages

New Node Association

using DODAG Information Solicitation (DIS) messages

LRP — Downward Routes

- Host routes may be created **reactively**...
 - ► Find a host into the network
 - Repair a broken host route
- ... or proactively
 - e.g. a newly associated node
 - Decrease energy consumption

\bigcap
Sink
\bigcirc
\bigcirc

Reactive Host Route Establishment,

using Route REQuest and Route REPly messages

Contributions

First Contribution — Loop-Free Local Repair

Aim Re-association to the network after link break

Existing solutions

- TORA: Must not lose routing packets & transient routing loops
 - RPL: Limited Count-to-Infinity situations

Local Repair,

direct re-association

Triggered by Neighbor Unreachability Detection algorithm

Problem To avoid loops, a node **must not move away** from the sink

Local Repair,

using Link Reversal mechanism: BReaK and UPDate messages

Second Contribution — Datapath Validation

<u>Aim</u> Detect loops created by the coexistance between host and default routes

Existing solutions

- Babel: Remember deleted routes, to ensure they are not used again
 - RPL: Add information (and IP header !) to all IP packets

LRP's order

Solution in LRP Use routes accordingly to an order

ightarrow More precise (prefix length) ightarrow Newer (sequence number) ightarrow Closer (metric)

Loop Detection on Packet Routing

Previously used route...

host or default route?

Identify predecessors

Ensure using default route to

successor

Looping Route Erasure,

using Route ERRor messages

Evaluations experiments

Emulation in Cooja —

Experimentation on IoT-lab — Collection Tree Construction

Experimentation on IoT-lab — Local Repair

Conclusion

- LRP: Loop-free local repair mechanism
 - Loop-free IP packets routing
 - Loop-free, at all time, low overhead

Perspectives

• Which metric use?

• Include distance into DIS message

• Expanding ring search for local repair

• Explicit predecessor declaration

Thank you !