Low Overhead Loop-Free Routing in Wireless Sensor Networks

Henry-Joseph Audéoud, Michał Król, Martin Heusse, and Andrzej Duda

Grenoble Institute of Technology,
CNRS Grenoble Informatics Laboratory UMR 5217,
Grenoble, France

Low Overhead Loop-Free Routing in Wireless Sensor Networks - Talk outline

- LRP: Lightweight Routing Protocol
- Based on a collection tree
- Downward host routes
- Loop-free local repair mechanism
- Loop-free IP packets routing
- Low Overhead
- Evaluations experiments

Presentation of LRP

LRP - Collection Tree

- Collect outgoing traffic
- Default routes directed to the root
- Construction similar to RPL

Collection Tree Construction,

using DODAG Information Object (DIO) messages

New Node Association

using DODAG Information Solicitation (DIS) messages

LRP - Downward Routes

- Host routes may be created reactively...
- Find a host into the network
- Repair a broken host route
- ... or proactively
- e.g. a newly associated node
- Decrease energy consumption

Reactive Host Route Establishment,

using Route REQuest and Route REPly messages

Contributions

First Contribution -Loop-Free Local Repair

Aim Re-association to the network after link break
Existing solutions
TORA: Must not lose routing packets \& transient routing loops
RPL: Limited Count-to-Infinity situations

Local Repair,

direct re-association

Triggered by Neighbor Unreachability Detection algorithm

Problem To avoid loops, a node must not move away from the sink

Local Repair,

using Link Reversal mechanism: BReaK and UPDate messages

Second Contribution Datapath Validation

Aim Detect loops created by the coexistance between host and default routes

Existing solutions
Babel: Remember deleted routes, to ensure they are not used again
RPL: Add information (and IP header !) to all IP packets

LRP's order

Solution in LRP Use routes accordingly to an order
\rightarrow More precise (prefix length)
\rightarrow Newer (sequence number)
$\quad \rightarrow$ Closer (metric)

Loop Detection on Packet Routing

Previously used route. . .

host or default route?

Identify predecessors

Ensure using default route to successor

Looping Route Erasure,

using Route ERRor messages

Evaluations experiments

Emulation in Cooja -

Experimentation on loT-lab Collection Tree Construction

Experimentation on loT-lab Local Repair

Conclusion

LRP: - Loop-free local repair mechanism

- Loop-free IP packets routing
- Loop-free, at all time, low overhead

Perspectives

- Which metric use?
- Include distance into DIS message
- Expanding ring search for local repair
- Explicit predecessor declaration

Thank you !

