Experimental Comparison of Routing Protocols for WSNs:

Routing Overhead & Asymmetric Links

Henry-Joseph Audéoud, Martin Heusse

ITC 29, Sept. 2017

Introduction

Intro. —

Routing Protocols for Wireless Sensors Networks?

Constrained devices — memory, computation, energy

Radio links — lossy, variable, shared...

Multi-hops network — need a routing protocol

Intro. — Experimental Comparison?

Work on a real testbed instead of simulation

Platform FIT I T-lab

Nodes M3 Open Node

OS ContikiOS 3.0

Radio channel Real radio interfaces

(i.e. with collisions, interference, variability...)

Routing protocol implementations

LRP: https://github.com/drakkar-lig/contiki/tree/lrp

RPL: included in ContikiOS' core

Intro. — RPL? LRP?

RPL Routing Protocol for LLNs (RFC 6550 and many others)

LRP

Lightweight Routing Protocol

construction

Collection Tree

Bellman-Ford

Host Routes

Proactive (Trickle)

Proactive (continuous)

Per-packet header

construction

maintenance

Host Routes

maintenance

Loop avoidance

Proactive

Collection Tree

Reactive (flooding)

Local rules

Intro. — Overview

Introduction

Routing Overhead

Asymmetric links

Conclusion

Routing Overhead

RPL Initialization — Collection Tree Construction

Distributed Bellman-Ford

RPL Initialization — Host Routes Construction

Proactive construction

RPL Initialization — Experiment example

Experiment on FIT leT-lab, 40 nodes, with RPL

RPL Steady State — Collection Tree Maintenance

Trickle: Continuous maintenance traffic

RPL Steady State — **Host Routes Maintenance**

Recurrent DAO traffic

RPL Steady State — **Experiment example**

LRP Initialization — Collection Tree Construction

Distributed Bellman-Ford

LRP Initialization — Host Routes Construction

Proactive construction

LRP Initialization — Experiment example

LRP Steady State — Collection Tree Maintenance

Local Repair mechanism

LRP Steady State — Host Routes Maintenance

Reactive: only when it is needed

LRP Steady State — **Experiment example**

LRP Steady State — **Experiment example**

LRP — Improve Local Repair: Expending Ring Search

Idea: Limit the flooding to the top of the sub-tree

Proposed in the paper

LRP — Improve Local Repair: Confined Route Requests

Idea: Also repair host routes!

Proposed in the paper

Asymmetric links

Does asymmetry really exist?

Tested on **FIT let-**lab, 28 nodes, 90 packets on each link.

The case of a deaf node

The case of a muted node

Conclusion

Conclusion

We have seen:

an **experimental comparison** of RPL and LRP the **protocols overhead** in normal situation their reaction in presence of **asymmetric links**

Next steps?

Balancing schemes (improve DODAG structure)
Multi-sink approach
Various prefix lengths

Thank you!