Home > News > Thesis defense — Gabriele Romaniello — March 17

Thesis defense — Gabriele Romaniello — March 17

Tuesday 17 March 2015

Energy Efficient Protocols for Harvested Wireless Sensor Networks

Soutenance prévue le jeudi 17 mars 2015 à 14h à l’Ensimag, 681 rue de la Passerelle, Domaine universitaire, 38402 Saint Martin d’Hères - Amphi E


This thesis concerns energy efficient protocols for harvested wireless sensor networks. It is a part of an industrial Internet of Things project. STMicroelectronics started the GreenNet project with the objective to develop and design a new generation of harvesting smart objects to be integrated in the Internet of Things. The GreenNet platform is novel with respect to the existing solutions due to its small size that implies a small energy buffer and small harvesting capabilities. This aspect makes the standard protocols and precedent solutions not directly applicable on this extremely low power platform. In this dissertation, we analyse standard protocols and existing solutions to identify their issues in the GreenNet platform. Then, we provide protocol and algorithm adaptations to make feasible the concept of auto configurable and sustainable networks of GreenNet nodes. We proposed MCBT, an energy efficient protocol for the bootstrap procedure. It enables low power nodes to be enrolled in multi-hop multi-channel wireless sensor networks thanks to the network support for enrolling new nodes. It represents an energy efficient solution that extends the standard protocol. We proposed STADA, a sustainable algorithm to adapt the node activity according to the available energy and traffic conditions. STADA is based on a weighted function that takes into account the energy present in the battery, the energy harvesting rate, and network traffic. In this way, the algorithm takes into account all main parameters to adapt the energy consumption and improve the node performance. To make the harvested network more efficient according to light variations, we proposed a novel metric that makes the path choice a simple process. With the Expected Delay, we synthesize all network parameters in a single monotonic variable that facilitates the path choice in multi-hop harvesting wireless sensor networks. All proposed solutions are designed to work with standard beacon-enabled IEEE 802.15.4 protocols and are easily portable on the future version of IEEE 802.15.4e. We validated the proposed protocols with emulations and simulations. The evaluation results shown better performance in terms of energy consumption and quality of service.

1996-2022 Drakkar | Site Map | | Contact | RSS 2.0 | SPIP