Drakkar
Home > News > Thesis defense — Timothy Claeys — December 19

Thesis defense — Timothy Claeys — December 19

Wednesday 11 December 2019

Security for the Internet of Things: A bottom-up approach to the secure and standardized Internet of Things

Soutenance prévue le jeudi 19 décembre 2019 à 14h dans la salle de séminaire 1 du bâtiment IMAG, 700 avenue Centrale, Domaine universitaire, 38400 Saint Martin d’Hères.

Résumé

La rapide expansion du marché de l’IoT a permis de relier de plus en plus de matériels bon marché à l’Internet. Pour bon nombre de ces objets, la sécurité ne constitue pas une priorité. En raison de leurs fonctionnalités avancées de détection et de manipulation, ces produits IoT mal sécurisés mettent en danger la vie privée et la sécurité de leurs utilisateurs.

Bien que l’IoT englobe des objets connectés de capacités variables, dans ces travaux, nous nous concentrons sur les équipements contraints en énergie, en ressources mémoires, et à faible puissance de calcul. Ces restrictions limitent non seulement la possibilité de traitements, mais aussi la capacité à protéger les données et les utilisateurs. Afin de sécuriser l’IoT, nous identifions plusieurs éléments de bases permettant de fournir des services de sécurité sur l’ensemble d’un équipement.

L’implémentation des mécanismes de sécurité au niveau matériel constitue un premier pilier pour l’IoT sécurisé. Diverses fonctions, telles que le démarrage sécurisé, l’attestation à distance et les mises à jour "over-the-air", dépendent en effet fortement de son support. Comme l’implémentation de la sécurité matérielle est souvent coûteuse et ne peut être appliquée aux systèmes existants, nous étudions l’attestation purement logicielle. Cette méthode fournit une racine de confiance aux systèmes distants qui ne supportent pas la sécurité au niveaumatériel. Dans le cadre de l’attestation à distance, l’identification de l’appareil est primordiale. Une partie de ce travail est donc consacrée à l’étude des identificateurs physiques des dispositifs et de leur fiabilité.

L’IoT sécurisé repose sur un deuxième élément clé: la cryptographie. Cette dernière est abondamment utilisée par tous les autres mécanismes de sécurité et largement étudiée. Nous étudions les performances des algorithmes cryptographiques récents pour les dispositifs contraints.

Un troisième élément central pour sécuriser l’IoT est la capacité de la pile protocolaire à sécuriser les communications. Nous montrons par exemple qu’il est possible d’exploiter la tolérance du BLE à la dérive d’horloge pour établir un canal couvert. D’autre part, il est possible de monter une attaque de déni de service en exploitant les phases énergivores du réseau, notamment la phase d’attache. Nous proposons dans ces travaux un algorithme défensif qui réduit quasiment à néant les surcoûts liés à la connexion au réseau.

Les architectures de sécurité constituent le dernier pilier pour la sécurité de l’IoT. Elles permettent en effet de guider le déploiement d’un IoT sécurisé à grande échelle. Après avoir étudié la proposition de l’IETF de schéma d’authentification et d’autorisation pour l’IoT, nous proposons deux pistes d’amélioration de la sécurité.

Enfin, la mise en place d’une architecture de sécurité implique le choix du protocole. Dans le contexte des réseaux contraints énergétiquement, le critère déterminant sera la consommation. Même si, à l’avenir, l’IoT utilisera principalement le paradigme d’objets sécurisés pour protéger les données, tant que ces derniers ne seront pas largement supportés, de nombreux produits IoT s’appuieront sur les protocoles de sécurité traditionnels tels que TLS et DTLS. C’est pourquoi nous réalisons une étude de performance sur la partie la plus critique de ces protocoles : l’établissement du secret partagé. Nous montrons que, même si le "handshake" DTLS utilise moins de paquets pour établir le secret partagé, TLS obtient des meilleurs résultats dans les réseaux avec pertes.

Abstract

The rapid expansion of the IoT has unleashed a tidal wave of cheap Internet-connected hardware. For many of these products, security was merely an afterthought. Due to their advanced sensing and actuating functionalities, poorly-secured IoT devices endanger the privacy and safety of their users. While the IoT contains hardware with varying capabilities, in this work, we primarily focus on the constrained IoT. The restrictions on energy, computational power, and memory limit not only the processing capabilities of the devices but also their capacity to protect their data and users from attacks. To secure the IoT, we need several building blocks. We structure them in a bottom-up fashion where each block provides security services to the next one.

The first cornerstone of the secure IoT relies on hardware-enforced mechanisms. Various security features, such as secure boot, remote attestation, and over-the-air updates, rely heavily on its support. Since hardware security is often expensive and cannot be applied to legacy systems, we alternatively discuss software-only attestation. It provides a trust anchor to remote systems that lack hardware support. In the setting of remote attestation, device identification is paramount. Hence, we dedicated a part of this work to the study of physical device identifiers and their reliability.

The IoT hardware also frequently provides support for the second building block: cryptography. It is used abundantly by all the other security mechanisms, and recently much research has focussed on lightweight cryptographic algorithms. We studied the performance of the recent lightweight cryptographic algorithms on constrained hardware.

A third core element for the security of the IoT is the capacity of its networking stack to protect the communications. We demonstrate that several optimization techniques expose vulnerabilities. For example, we show how to set up a covert channel by exploiting the tolerance of the Bluetooth LE protocol towards the naturally occurring clock drift. It is also possible to mount a denial-of-service attack that leverages the expensive network join phase. As a defense, we designed an algorithm that almost completely alleviates the overhead of network joining.

The last building block we consider is security architectures for the IoT. They guide the secure integration of the IoT with the traditional Internet. We studied the IETF proposal concerning the constrained authentication and authorization framework, and we propose two adaptations that aim to improve its security. Finally, the deployment of the IETF architecture heavily depends on the security of the underlying communication protocols. In the future, the IoT will mainly use the object security paradigm to secure data in flight. However, until these protocols are widely supported, many IoT products will rely on traditional security protocols, i.e., TLS and DTLS. For this reason, we conducted a performance study of the most critical part of the protocols: the handshake phase. We conclude that while the DTLS handshake uses fewer packets to establish the shared secret, TLS outperforms DTLS in lossy networks.


1996-2020 Drakkar | Site Map | | Contact | RSS 2.0 | SPIP